• Title/Summary/Keyword: Nano-bio technology

Search Result 533, Processing Time 0.027 seconds

Synthesis of Aluminum Nitride Nanopowders by Carbothermal Reduction of Aluminum Oxide and Subsequent In-situ Nitridization (산화알루미늄 분말의 탄소열환원 및 직접 질화반응을 통한 질화알루미늄 나노분말의 합성)

  • Seo, Kyung-Won;Lee, Seong-Yong;Park, Jong-Ku;Kim, Sung-Hyun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.432-438
    • /
    • 2006
  • Aluminum nitride (AlN) nanopowders with low degree of agglomeration and uniform particle size were synthesized by carbothermal reduction of alumina and subsequent direct nitridization. Boehmite powder was homogeneously admixed with carbon black nanopowders by ball milling. The powder mixture was treated under ammonia atmosphere to synthesize AlN powder at lour temperature. The effect of process variables such as boehmite/carbon black powder ratio, reaction temperature and reaction time on the synthesis of AlN nanopowder was investigated.

EXPERIMENTS FOR VALIDATING NUMERICAL ANALYSIS USING ADVANCED FLOW VISUALIZATION TECHNOLOGIES (첨단 유동가시화 기술을 이용한 수치해석 검증용 실험)

  • Lee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.14-17
    • /
    • 2008
  • Recently, several advanced flow visualization techniques such as Particle Image Velocimetry (PIV) including stereo PIV, holographic PIV, and dynamic PIV have been developed. These advanced techniques have strong potential as the experimental technology which can be used for verifying numerical simulation. In addition, there would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the basic research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is difficult for conventional methods to observe most complicated nano- and bio-fluidic phenomena. In this paper, the basic principle of these advanced visualization techniques and their practical applications which cannot be resolved by conventional methods, such as flow in automotive HVAC system, ship and propeller wake, three-dimensional flow measurement in micro-conduits, and flow around a circulating cylinder will be introduced.

  • PDF

EXPERIMENTS FOR VALIDATING NUMERICAL ANALYSIS USING ADVANCED FLOW VISUALIZATION TECHNOLOGIES (첨단 유동가시화 기술을 이용한 수치해석 검증용 실험)

  • Lee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.14-17
    • /
    • 2008
  • Recently, several advanced flow visualization techniques such as Particle Image Velocimetry (PIV) including stereo PIV, holographic PIV, and dynamic PIV have been developed. These advanced techniques have strong potential as the experimental technology which can be used for verifying numerical simulation. In addition, there would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the basic research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is difficult for conventional methods to observe most complicated nano- and bio-fluidic phenomena. In this paper, the basic principle of these advanced visualization techniques and their practical applications which cannot be resolved by conventional methods, such as flow in automotive HVAC system, ship and propeller wake, three-dimensional flow measurement in micro-conduits, and flow around a circulating cylinder will be introduced.

  • PDF

Recent research trends on Bio-MEMS (Bio-MEMS분야의 최근 연구동향)

  • Park, Se-Kwang;Yang, Joo-Ran
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

A Study on the Development of Industrial Clusters in the International Science and Business Belt through the Industrial Clustering Analysis (산업 클러스터링 분석을 통한 국제과학비즈니스벨트의 클러스터 발전 방향 연구)

  • Jung, Hye-Jin;Og, Joo-Young;Kim, Byung-Keun;Ji, Il-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.370-379
    • /
    • 2018
  • The Korean government announced plans for the International Science Business Belt as a spatial area for promoting the linkage between scientific knowledge and commercialization in 2009. R&D and entrepreneurial activities are essential for the success of the International Science Business Belt. In particular, prioritizing the types of businesses is critical at the cluster establishment stage in that this largely affects the features and development of clusters comprising the International Science Business Belt. This research aims to predict the entry and growth of firms that specialize in four industrial clusters, including Big Science Cluster, Frontier Cluster, ICT Cluster, and Bio-Healthcare Cluster. For this purpose, we employ the Swann & Prevezer's industrial clustering model to identify sectors that affect the establishment and growth of industrial clusters in the International Science Business Belt, focusing on ICT, Bio-Healthcare and Frontier clusters. Data was collected from the 2014 Korean Innovation Survey (KIS) and University Alimi for the ICT cluster, 2014 National Bio Industry Survey and University Alimi for the Bio-Healthcare Cluster, and the 2015 National Nano Convergent Industry Survey and Annual Report of Nano Technology for the Frontier cluster. Empirical results show that the ICT service sector, bio process/equipment sector, and Nano electronic sector promote clustering in other sectors. Based on the analysis results, we discuss several policy implications and strategies that can attract relevant firms for the development of industrial clusters.

Hybrids of Au nanodishes and Au nanoparticles

  • Son, Jin Gyeong;Han, Sang Woo;Lee, Tae Geol;Wi, Jung-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.228.1-228.1
    • /
    • 2015
  • We demonstrate a simple route to hybridize two different nanomaterials by using three-dimensional nanodishes that can be used as small plasmonic containers to host guest nanoparticles. Our nanodishes were fabricated using nanoimprint lithography and oblique-angle film deposition, and the guest nanoparticles were drop-casted onto the host nanodishes. Based on the proposed method, colloidal Au nanoparticles were assembled inside Au nanodishes in the form of a labyrinth. These Au nanoparticle-nanodish hybrids excited a strong surface plasmon resonance, as verified by a numerical simulation of the local field enhancement and by direct observation of the enhanced Raman signals. Our results point to the potential of the nanodishes as a useful platform for combining diverse nanomaterials and their functionalities.

  • PDF

Conformational Dependent Energy Migration on Cyclic Porphyrin Arrays

  • Song, Suwhan;Han, Minwoo;Sim, Eunji
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.163-166
    • /
    • 2015
  • Intramolecular energy migration in a cyclic porphyrin array is spontaneous transfer of energy from one excited site to another. Since the efficiency of energy migration is inversely proportional to distance, the energy migration is occurred on their adjacent sites more often than distant ones. Therefore, the energy migration in the cyclic porphyrin array is largely dependent on their conformational characters. However, evaluation of conformational information by means of experimental tools is ambiguous since their limited resolution. In this work, we calculate the internal angle and distance distributions of cyclic porphyrin arrays using molecular dynamics simulations to obtain conformational information. To evaluate the angle and distance distributions respect to molecular size, we constructed molecules with n porphyrin dimers (n=1,3,7) in implicit solvent environment. Performing molecular dynamics simulations, we modulated alkyl groups to investigate additional conformational effects of the system.

  • PDF

A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm

  • Piao, Longhai;Lee, Kyung-Hoon;Min, Byoung-Koun;Kim, Woong;Do, Young-Rag;Yoon, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.117-121
    • /
    • 2011
  • Size-controlled Ag nanoparticles (NPs) were prepared from the decomposition of Ag(I) carboxylates using ethanolamine derivatives as a reducing agent without an additional stabilizing agent. The size of the Ag NPs with a narrow size distribution (sub-10 nm to ca. 40 nm) was controlled precisely by varying the processing parameters, such as the type of reducing agent and the chain length of the carboxylate in the Ag(I) carboxylate. The optical properties, surface composition and crystallinity of the Ag NPs were characterized by ultraviolet-visible spectroscopy, gas chromatography-mass spectrometry, thermal gravimetric analysis, transmission electron microscopy and X-ray diffraction.