• 제목/요약/키워드: Nano-alumina

검색결과 205건 처리시간 0.023초

AAO를 이용한 나노 마스터 제작에 관한 연구 (Study on Fabrication of Highly Ordered Nano Master by Using Anodic Aluminum Oxidation)

  • 권종태;신홍규;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.162-165
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Electrical Properties of Silicone Rubber Filled with Surface Treated Alumina Trihydrate

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권3호
    • /
    • pp.134-140
    • /
    • 2006
  • The effect of surface treatment of fillers on the mechanical, electrical properties, and tracking performance of silicone rubber insulators have been investigated. For base polymer, $\alpha,\;\omega$) vinyl poly(dimethyl-methylphenyl) siloxane(VPMPS) containing dimethyl siloxane and methylphenyl siloxane was prepared by the equilibrium polymerization. High voltage silicone rubber composites(HVSRC) were prepared from VPMPS, nano-silica, and alumina trihydrate (ATH) modified by various coupling agents. Bound rubber of uncured silicone rubber, cross-linking density of the vulcanizate as well as the mechanical, electrical properties, and tracking performance were measured.

양극산화공정을 이용한 고세장비의 폴리머 마스터 제작 (Fabrication of Polymer Master with High Aspect Ratio by Using Anodic Aluminum Oxidation)

  • 권종태;신홍규;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.285-287
    • /
    • 2008
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

나노 버블과 메가소닉 초음파를 이용한 반도체 웨이퍼 세정장치 개발 (Development of Wafer Cleaning Equipment Using Nano Bubble and Megasonic Ultrasound)

  • 김노유;이상훈;윤상;정용래
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.66-71
    • /
    • 2023
  • This paper describes a hybrid cleaning method of silicon wafer combining nano-bubble and ultrasound to remove sub-micron particles and contaminants with minimal damage to the wafer surface. In the megasonic cleaning process of semiconductor manufacturing, the cavitation induced by ultrasound can oscillate and collapse violently often with re-entrant jet formation leading to surface damage. The smaller size of cavitation bubbles leads to more stable oscillations with more thermal and viscous damping, thus to less erosive surface cleaning. In this study, ultrasonic energy was applied to the wafer surface in the DI water to excite nano-bubbles at resonance to remove contaminant particles from the surface. A patented nano-bubble generator was developed for the generation of nano-bubbles with concentration of 1×109 bubbles/ml and nominal nano-bubble diameter of 150 nm. Ultrasonic nano-bubble technology improved a contaminant removal efficiency more than 97% for artificial nano-sized particles of alumina and Latex with significant reduction in cleaning time without damage to the wafer surface.

  • PDF

Enhancement of Dielectric Properties of Polyamide Enamel Insulation in High Voltage Apparatuses Used in Medical Electronics by Adding Nano Composites of SiO2 and Al2O3 Fillers

  • Biju, A.C.;Victoire, T. Aruldoss Albert;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1712-1719
    • /
    • 2015
  • In recent days, there was a significant development on the electrical, thermal, mechanical, physical, chemical, magnetic and optical properties of the polyamide enamel, varnish and other insulating materials by the addition of nano fillers to it. Enamel was used in High Voltage Apparatuses used in Medical Electronics as insulation. Insulating materials determine the life time of the electrical apparatuses. The life time of the insulating materials was improved by the addition of nano fillers to it. Hence the life time of the electrical apparatuses was improved by the mixing of nano fillers to the enamel. In this research, the basic dielectric properties of the enamel and enamel mixed with nano composites of silica and alumina were analyzed and compared with each other. The addition of nano fillers has improved the quality factor and capacitance of the enamel. It was also observed that the addition of nano fillers has reduced the dissipation factor and dielectric losses of the enamel. Heat produced by the dielectric losses was also reduced by adding nano fillers to it.

Al 분말의 수화 반응과 스파크 플라즈마 열처리법으로 제조된 알루미나 성형체 연구 (Study of Hydrolysis of Al Powder and Compaction of Nano Alumina by Spark Plasma Sintering(SPS))

  • 엄영랑;이민구;이창규
    • 한국분말재료학회지
    • /
    • 제12권6호
    • /
    • pp.422-427
    • /
    • 2005
  • The $Al_2O_3$ with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite $(\beta-Al(OH)_3)$ phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of $100^{\circ}C$ per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from $100^{\circ}C\;to\; 1100^{\circ}C$, the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of $Al(OH)_3{\to}{\eta}-Al_2O_3{\to}{\theta}-Al_2O_3{\to}\alpha-Al_2O_3$ sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to ${\gamma}-Al_2O_3\;at\;350^{\circ}C.$ It shows AlO(OH) ${\gamma}-Al_2O_3{\to}{\delta}-Al_2O_3{\to}{\alpha}-Al_2O_3$ sequences. The ${\gamma}-Al_2O_3$ compacted at $550^{\circ}C$ shows a high surface area $(138m^2/g)$.

나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구 (Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2)

  • 한상도;홍대웅;한치환;전일수
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

나노 ZnO:CNT를 이용한 후막 가스센서의 특성연구 (Characteristics of Thick Film Gas Sensors Using Nano ZnO:CNT)

  • 윤소진;유일
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.413-416
    • /
    • 2014
  • The effects of an addition of CNT on the sensing properties of nano ZnO:CNT-based gas sensors were studied for $H_2S$ gas. The nano ZnO sensing materials were grown by a hydrothermal reaction method. The nano ZnO:CNT was prepared by ball-milling method. The weight range of the CNT addition on the ZnO surface was from 0 to 10%. The nano ZnO:CNT gas sensors were fabricated by a screen-printing method on alumina substrates. The structural and morphological properties of the ZnO:CNT sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns revealed that nano ZnO:CNT powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The size of the ZnO was about 210 nm, as confirmed by SEM images. The sensitivity of the nano ZnO:CNT-based sensors was measured for 5 ppm of $H_2S$ gas at room temperature by comparing the resistance in air with that in target gases.