• Title/Summary/Keyword: Nano-Slag

Search Result 28, Processing Time 0.024 seconds

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

On-Site Corrosion Behavior of T91 Steel after Long-Term Service in Power Plant

  • He, Yinsheng;Chang, Jungchel;Lee, Je-Hyun;Shin, Keesam
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.612-615
    • /
    • 2015
  • In this work, on-site corrosion behavior of heat resistant tubes of T91, used as components of a superheater in a power plant for up to 25,762 h, has been investigated using scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscattered diffraction(EBSD), with the objectives of studying the composition, phase distribution, and evolution during service. A multi-layer structure of oxide scale was found on both the steamside and the fireside of the tube surface; the phase distribution was in the order of hematite/magnetite/spinel from the outer to the inner matrix on the steamside, and in the order of slag/magnetite/spinel from the outer to the inner matrix on the fireside. The magnetite layer was found to be rich in pores and cracks. The absence of a hematite layer on the fireside was considered to be due to the low oxygen partial pressure in the corrosion environment. The thicknesses of the hematite and of the slag-deposit layer were found to exhibit no significant change with the increase of the service time.

Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory (산화물계 SEN내화물의 슬래그 라인부 침식특성 연구)

  • Sung, Young Taek;Son, Jeong Hun;Lee, Sung Seok;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing $ZrO_2$, $Al_2O_3$, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at $1000^{\circ}C$ for 3 h in $N_2$ atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at $1550^{\circ}C$ for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at $1000^{\circ}C$ and $1550^{\circ}C$ for 2h. $ZrO_2$-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, $ZrO_2-Al_2O_3$-C and $ZrO_2$-MgO-C showed better resistance than $ZrO_2$-C in the slag corrosion test. The diameter variation index of $ZrO_2$-C refractory was 16.1 at $1000^{\circ}C$ for 2 h. The diameter variation index of the $ZrO_2-Al_2O_3$-C refractory was larger than that of the $ZrO_2$-C refractory at $1550^{\circ}C$ for 2 h.

Chemical Properties of Converter Slag according to CO2 Nanobubble Acceleration Aging Time (CO2 나노버블 에이징 시간에 따른 전로슬래그의 화학적 특성)

  • Lim, Chang-Min;Im, Geon-Woo;Kim, Young-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.91-92
    • /
    • 2023
  • In this study, the chemical composition of converter slag according to CO2 nanobubble promotion aging time was examined. The CO2 nanobubble water immersion time was 0, 12, 24, 36, 48 hours, and then dried and pulverized to perform XRD analysis. As a result, the longer the sample was immersed in CO2 nanobubble water, the higher the amount of calcite produced, and the change after 36 hours was minimal.

  • PDF

Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT

  • Khater, H.M.;Gawwad, H.A. Abd El
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.225-242
    • /
    • 2015
  • The current investigation aims to study performance of geopolymer mortar reinforced with Multiwalled carbon nanotubes upon exposure to $200^{\circ}C$ to $1000^{\circ}C$ for 2 hrs. MWCNTs are doped into slag Geopolymer mortar matrices in the ratio of 0.0 to 0.4, % by weight of binder. Mortar composed of calcium aluminosilicate to sand (1:2), however, binder composed of 50% air cooled slag and 50% water cooled slag. Various water / binder ratios in the range of 0.114-0.129 used depending on the added MWCNT, while 6 wt., % sodium hydroxide used as an alkali activator. Results illustrate reduction in mechanical strength with temperature except specimens containing 0.1 and 0.2% MWCNT at $200^{\circ}C$, while further increase in temperature leads to decrease in strength values of the resulting geopolymer mortar. Also, decrease in firing shrinkage with MWCNT up to 0.1% at all firing temperatures up to $500^{\circ}C$ is observed, however the shrinkage values increase with temperature up to $500^{\circ}C$. Further increase on the firing temperature up to $1000^{\circ}C$ results in an increase in the volume due to expansion.

BOF Refining of Fluorspar Substitute Using Iron Oxide Based By-product (산화철계 형석대체제의 전로 정련특성)

  • Keum, C.H.;Hur, B.Y.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.336-340
    • /
    • 2006
  • Fluorspar has been essential flux in steelmaking process. The main effects of fluorspar addition are lowering of the viscosity and melting temperature of slag. In recent years, due to the increasing price and environmental problem of fluorspar, various types of fluorspar substitute have been investigated. In this study, iron oxide by-products such as sinter dust, basic oxygen furnace (BOF) sludge and mill scale were developed as a substitute in terms of waste recycling. Several plant trials were carried out by addition of briquetted substitutes of $4{\sim}6$ kg/ton to compare with the fluorspar of $0.7{\sim}1$ kg/ton. The substitutes showed a similar behavior of slag formation, phosphorus removal and MgO saturation content.

Thermal property of geopolymer on fly ash-blast furnace slag system with the addition of alumina aggregate (알루미나 골재 첨가에 따른 플라이애쉬-고로슬래그계 지오폴리머의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • In this study, the higher temperature thermal property of the fly ash-blast furnace slag system Geopolymer including alumina aggregate was investigated whether that Geopolymer will be or not useful as thermal-resistant construction materials. Under every mixing conditions, the crack on the surface of hardened body was not observed up to $800^{\circ}C$ and it corresponded with fact that level of changes was not significant before and after heating process. Residual compressive strength is most high when mixing Blast-Furnace Slag ratio is 60 wt% until temperature reaches $800^{\circ}C$. The major hydrates of hardened body of Geopolymer; amorphous halo pattern between $20{\sim}35^{\circ}$ (2theta) and mullite ($3Al_2O_3{\cdot}2SiO_2$) and quartz ($SiO_2$) was found during the experiment. Amorphous halo pattern was a aluminosilicate gel generated by geopolymeric polycondensation and it was found that the halo pattern of aluminosilicate gel was preserved up to $800^{\circ}C$. The patterns of aluminosilicate gel disappeared from $1,000^{\circ}C$ and crystal phases like gehlenite, calcium silicate, calcium aluminum oxide, microcline was observed with the increase of exposure temperature.

Leaching of Ca, Fe and Si in Electric Arc Furnace Steel Slag by Aqueous Acetic acid Solution for Indirect Carbonation (간접탄산염화를 위한 전기로제강슬래그 중 Ca, Fe 및 Si 성분의 초산수용액 침출)

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • It has been reported that aqueous indirect carbonation process of calcium silicate mineral could be one of the most promising methods for $CO_2$ sequestration. The process consists of two main steps, extraction of Ca from calcium silicate and carbonation of the extracted solution by $CO_2$. Many types of acids such as HCl and $HNO_3$ can be used in the extraction step of the process. In the case of using aqueous acetic acid solution as the extraction solvent, acetic acid can be reproduced at the carbonation step of the extracted solution by $CO_2$ and recycled to extraction step for reuse it. Industrial by-products such as iron and steel slags are potential raw materials of the indirect carbonation process due to their high contents of calcium silicate. In this study, in order to examine the extraction efficiency of domestic electric arc furnace steel slag by aqueous acetic acid solution, extraction experiments of the slag were performed by using the aqueous acetic acid solutions of varying extraction conditions ; acetic acid concentrations, extraction temperatures and times.

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

Characteristic of Elastic Paving Materials in Bicycle Road using Polyurethane (폴리우레탄을 이용한 자전거도로의 탄성포장재 특성)

  • Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • In this study, characteristic of elastic paving materials in bicycle road using polyurethane were studied experimentally. As a results, following their good result was obtained. Bicycle road packaging materials are flexural strength g test, ratio of mass change after freezing and thawing, repulsion elasticity test, water Permeation coefficient test and slip resistance test results showed good performance.