Browse > Article
http://dx.doi.org/10.12989/anr.2015.3.4.225

Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT  

Khater, H.M. (Housing and Building National Research Centre (HBNRC))
Gawwad, H.A. Abd El (Housing and Building National Research Centre (HBNRC))
Publication Information
Advances in nano research / v.3, no.4, 2015 , pp. 225-242 More about this Journal
Abstract
The current investigation aims to study performance of geopolymer mortar reinforced with Multiwalled carbon nanotubes upon exposure to $200^{\circ}C$ to $1000^{\circ}C$ for 2 hrs. MWCNTs are doped into slag Geopolymer mortar matrices in the ratio of 0.0 to 0.4, % by weight of binder. Mortar composed of calcium aluminosilicate to sand (1:2), however, binder composed of 50% air cooled slag and 50% water cooled slag. Various water / binder ratios in the range of 0.114-0.129 used depending on the added MWCNT, while 6 wt., % sodium hydroxide used as an alkali activator. Results illustrate reduction in mechanical strength with temperature except specimens containing 0.1 and 0.2% MWCNT at $200^{\circ}C$, while further increase in temperature leads to decrease in strength values of the resulting geopolymer mortar. Also, decrease in firing shrinkage with MWCNT up to 0.1% at all firing temperatures up to $500^{\circ}C$ is observed, however the shrinkage values increase with temperature up to $500^{\circ}C$. Further increase on the firing temperature up to $1000^{\circ}C$ results in an increase in the volume due to expansion.
Keywords
MWCNT; geopolymer; mortar; WCS; ACS; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ASTM C109M-12 (2012), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.
2 Bakharev, T. (2004), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-70.   DOI
3 Bakharev, T. (2006), "Thermal behavior of geopolymer prepared using class F fly ash and elected temperature curing", Cement Concrete Res., 36,1134-1147.   DOI
4 Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Effect of elevated temperature curing on properties of alkali-activated slag concrete", Cement Concrete Res., 29, 1619-1625.   DOI
5 Ben Haha, M., Le Saout, G., Winnefeld, F. and Lothenbach, B. (2011), "Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags", Cement Concrete Res., 41(3), 301-10.   DOI
6 Ben Haha, M., Lothenbach, B., Le Saout, G. and Winnefeld, F. (2011), "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part I: effect of MgO", Cement Concrete Res., 41(9), 955-63.   DOI
7 Bernal, S.A., Rodriguez, E.D., de Gutierrez, R.M., Gordillo, M. and Provis, J.L. (2011), "Mechanical and thermal characterization of geopolymers based on silicate activated metakaolin/slag blends", J. Mater. Sci., 46(16), 5477-86.   DOI
8 Bernal, S.A., Rodriguez, E.D., de Gutierrez, R.M., Provis, J.L. and Delvasto, S. (2012), "Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash", Waste Biomass Valor, 3, 99-108.   DOI
9 Bi, S., Su, X., Hou, G., Liu, C., Song, W.L. and Cao, M.S. (2013), "Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina/ceramic composites", Ceram Int., 39(5), 5979-83.   DOI
10 Chen, S.J., Collins, F.G., Macleod, A.J.N., Pan, Z., Duan, W.H. and Wang, C.M. (2011), "Carbon nanotube-cement: a retrospect", ISE J. Part A: Civil Struct. Eng., 4(4), 254-65.   DOI
11 Chen, J. and Poon, C. (2009), "Photocatalytic construction and building materials: From fundamentals to applications", Build. Envir., 44(9), 1899-1906.   DOI
12 Chukanov, N. (2014), Infrared spectra of mineral species, Springer.
13 Chung, D.D.L. (2001), "Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials", Carbon., 39(8), 1119-25.   DOI
14 Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion,workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-74.   DOI
15 de Vargas, A.S., Dal Molin, D.C., Masuero, A.B., Vilela, A.C., Castro-Gomes, J. and de Gutierrez, R.M. (2014), "Strength development of alkali-activated fly ash produced with combined NAOH and $CA(OH)_2$ activators", Cement Concrete Compos., 53, 341-349.   DOI
16 Fu, K., Huang, W. and Lin, Y. (2001), "Defunctionalization of functionalized carbon nanotubes", Nano Lett., 1(8), 439-441.   DOI
17 Duxson, P., Lukey, G.C. and van Deventer, J.S.J. (2007), "The thermal evolution of metakaolin geopolymers: Part 2-phase stability and structural development", J. Non-Cryst .Solid., 353, 2186-200.   DOI
18 El-Sayed, H.A., Abo El-Enein, S.A., Khater, H.M. and Hasanein, S.A. (2011), "Resistance of alkali activated water cooled slag geopolymer to sulfate attack", Ceramics-Silikaty, 55, 153-160.
19 Fakhru'l-Razi, A., Atieh, M.A., Girun, N., Chuah, T.G., El-Sadig, M. and Biak, D.R.A. (2006), "Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber", Compos. Struct., 75(1-4), 496-500.   DOI
20 Gao, D., Sturm, M. and Mo, Y. (2009), "Electrical resistance of carbon-nanofiber concrete", Smart Mater. Struct., 18, 095039.   DOI
21 Gay, C. and Sanchez, F. (2010), "Performance of carbon nanofiber-cement composites with a high-range water reducer", Transp. Res. Rec., J. Tran. Res. Board., 2142, 109-13.   DOI
22 Hamon, M.A., Hui, H. and Bhowmik, P. (2002), "Ester-functionalized soluble single-walled carbon nanotubes", Appl. Phys. A., 74(3), 333-338.
23 Han, B., Yu, X. and Ou, J. (2011), Multifunctional and smart carbon nanotube reinforced cement-based materials, Nanotechnology in Civil Infrastructure, Springer.
24 Han, B., Yang, Z. and Shi, X. (2013), "Transport properties of carbon-nanotube/cement composites", J. Mater. Eng. Perform., 22(1), 184-189.   DOI
25 Khalili, S.M.R. and Haghbin, A. (2013), "Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads", Compos. Struct., 98, 253-60.   DOI
26 Heister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L. and Emmanuel Flahaut, E. (2010), "Higher dispersion efficacy of functionalized carbon nanotubes inchemical and biological environments", ACS Nano, 4(5), 2615-26.   DOI
27 Huang, S. (2012), "Multifunctional graphite nanoplatelets (GNP) reinforced cementitious composites", Dissertation for the Degree of Master of Engineering, National University of Singapore, Singapore.
28 Jiang, X., Kowald, T., Staedler, T. and Trettin, R. (2005), "Carbon nanotubes as a new reinforcement material for modern cement-based binders", RILEM Proceedings, 2nd International Symposium on Nanotechnology in Construction, 209-213.
29 Kim, H.K., Nam, I.W. and Lee, H.K. (2012), "Microstructure and mechanical/EMI shielding characteristics of CNT/cement composites with various silica fume contents", UKC 2012 on Science, Technology, and Entrepreneurship, California, USA, August.
30 Kong, D.L.Y. and Sanjayan, J.G. (2008), "Damage behaviour of geopolymer composites exposed to elevated temperatures", Cement Concrete Compos., 30(10), 986-91.   DOI
31 Konsta-Gdoutos, M.S, Metaxa, Z.S. and Shah, S.P. (2010), "Highly dispersed carbon nanotubes reinforced cement based materials", Cement Concrete Res., 40(7), 1052-9.   DOI
32 Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010), "Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites", Cement Concrete Compos., 32(2), 110-5.   DOI
33 Makar, J., Margeson, J. and Luh, J. (2005), "Carbon nanotube/cement composites-early results and potential applications", 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, August.
34 Laurenzi, S., Pastore, R., Giannini, G. and Marchetti, M. (2013), "Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy", Compos. Struct., 99, 62-8.   DOI
35 Li, G., Wang, P. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245.   DOI
36 Ma, P.C., Siddiqui, N.A. and Marom, G. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review", Compos. Part A: Appl. Sci. Manuf., 41(10), 1345-1367.   DOI
37 Mukhopadhyay, A.K. (2011), Next-generation nano-based concrete construction products: a review, Nanotechnology in Civil Infrastructure, Springer Berlin Heidelberg.
38 Nam, I.W., Kim, H.K. and Lee, H.K. (2010), "Investigation of high-strength and electromagnetic wave shielding properties of a mortar incorporating carbon nanotube (CNT)", IV European conference on computational mechanics (ECCM IV), Paris, France, May.
39 Norsker, H. (1987), The Self-reliant potter: refractories and kilns, Vieweg&Sohn, Friedr, Braunschweig/ Wiesbaden.
40 Pacheco-Torgal, F., Domingos, M., Ding, Y. and Jalali, S. (2011), "Composition, strength and workability of alkali-activated metakaolin based mortars", Construct. Build. Mater., 25, 3732-3745.   DOI
41 Pan, Z., Sanjayan, J.G. and Rangan, V. (2011), "Fracture properties of geopolymer paste and concrete", Mag. Concrete Res., 63(10), 763-71.   DOI
42 Reich, S., Thomsen, C. and Maultzsch, J. (2004), Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Germany.
43 Panias, D., Giannopoulou, I.P. and Perraki, T. (2007), "Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers", Coll. Surf. A: Physicochem. Eng. Aspect., 301, 246-254.   DOI
44 Parveen, S., Rana, S. and Fangueiro, R. (2013), "A review on nanomaterial dispersion, microstructure and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites", J. Nanomater., Article No. 80, 71017580.
45 Raki, L., Beaudoin, J. and Alizadeh, R. (2010), "Cement and concrete nanoscience and nanotechnology", Mater., 3(2), 918-942.   DOI
46 Walters, D.A. (1999), "Elastic strain of freely suspended single-wall carbon nanotube ropes", Appl. Phys. Lett., 74, 3803-5.   DOI
47 Saikia, N., Usami, A., Kato, S. and Kojima, T. (2004), "Hydration behavior of ecocement in presence of metakaolin", Res. Prog. J., 51, 35-41.
48 Sanchez, F. and Ince, C. (2009), "Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites", Compos. Sci. Technol., 69(7-8), 1310-8.   DOI
49 Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete-a review", Construct. Build. Mater., 24(11), 2060-2071.   DOI
50 Shah, S.P., Konsta-Gdoutos, M.S. and Metaxa, Z.S. (2011), Advanced Cement Based Nanocomposites, Recent Advances in Mechanics, Springer.
51 Sobolev, K. and Gutierrez, M.F. (2005), "How nanotechnology can change the concrete world", Am. Ceram. Soc. Bull., 84(10), 14-18.
52 Wenying, G., Guolin, W., Jianda, W., Ziyun, W. and Suhong, Y. (2008), "Preparation and performance of geopolymers", J. Wuhan Univ. Tech.-Mater. Sci. Ed., 23(3), 326-330.   DOI
53 Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I. and Volkmer, C. (2010), "Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites", Compos. Sci. Technol., 70(16), 2253-7.   DOI
54 Ugheoke, B.I., Onche, E.O., Namessan, O.N. and Asikpo, G.A. (2006), "Property optimization of kaolin-rice husk insulating fire-bricks", Leonardo Electronic Journal of Practices and Technologies, Issue 9, July-December.
55 Weitzel, B., Hansen, M.R., Kowald, T.L., Muller, T., Spiess, H.W. and Trettin, H.F.R. (2011), "Influence of multiwalled carbon nanotubes on the microstructure of CSH-phases", Proceeding of 13th Congress on the Chemistry of Cement, Madrid, Spain, July.
56 Xie, X., Mai, Y. and Zhou, X. (2005), "Dispersion and alignment of carbon nanotubes in polymer matrix: a review", Mater. Sci. Eng. R: Report., 49(4), 89-112.   DOI
57 Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 1-5.