• Title/Summary/Keyword: Nano-Positioning Planar Scanner

Search Result 3, Processing Time 0.016 seconds

A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 1 : Design and Analysis of Static and Dynamic Properties (주사 현미경용 평면 스캐너 Part 1 :설계 및 정 · 동특성 해석)

  • Lee, Dong-Yeon;Lee, Moo-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.667-673
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program.

Development of a Sample Scanner for Atomic Force Microscope (원자 현미경용 샘플 스캐너의 개발)

  • Lee, Dong-Yeon;Lee, Moo-Yeon;Gweon, Dae-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.879-882
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(Finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program. Moreover, we presented the actual AFM(Atomic Force Microscope) imaging results with up to 2Hz imaging scan rate. Experimental results show that the properties of the proposed planar scanner is well enough to be used in SPM applications like AFM.

  • PDF

A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 2. Evaluation of Static and Dynamic Properties (주사 현미경용 평면 스캐너 Part 2 : 정 · 동 특성 평가)

  • Lee, Moo-Yeon;Gweon, Dae-Gab;Lee, Dong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1295-1302
    • /
    • 2005
  • This paper shows experimental evaluation results of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors as like explained in detail in Ref. (5). First, the fabrication methods were explained. Second, as the static Properties of the Planar scanner. we evaluated the maximum travel range & crosstalk. Also, we presented the correcting method for crosstalk using electric circuits finally. as the dynamic properties of the planar scanner, we evaluated the first resonant frequency. Also, we presented the actual AFM(atomic force microscope) imaging results with up to 2Hz imaging scan rate. Experimental results show that properties of the proposed planar scanner are well enough to be used in SPM applications like AFM.