• 제목/요약/키워드: Nano-Composite

검색결과 1,028건 처리시간 0.031초

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

비표면처리 강판을 사용한 iFLASH 시스템의 휨성능 평가 (Flexural Behavior of iFLASH System with No Blast Metal Cleaned Steel Plates)

  • 김용열;류재호;윤성원;주영규
    • 복합신소재구조학회 논문집
    • /
    • 제6권4호
    • /
    • pp.30-37
    • /
    • 2015
  • iFLASH System is new structural floor system which consists of sandwich panels filled with nano-composite. The nano-composite has low specific gravity and high bonding strength with steel plates. The bonding strength is one of important factors for structural performance of iFLASH System and it can further be improved by surface preparation such as blast metal cleaning. However, using none blast steel plates is recommended since surface preparation generates additional fabrication time and cost. In this study, a bonding strength test and bending experiment were conducted to check feasibility of applying none blast steel plates to iFLASH System. Moreover, stress in bonding plane between steel plates and nano-composite was analytically evaluated by finite element method. Consequently, flexural capacity of the specimen was 11% higher than theoretically calibrated value and its flexural behavior was structurally efficient without defect of bonding.

$Al_2O_3$/SiC Hybrid-Composite의 제조 (Fabrication of $Al_2O_3$/SiC Hybrid-Composite)

  • 이수영;임경호;전병세
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.103-112
    • /
    • 1996
  • $Al_2O_3/SiC$ Hybrid-Composite이 일반적인 분말공정에 의하여 제조되었다. 소결시 $\gamma-Al_2O_3에서 $\alpha-Al_2O_3$로의 전이에 seed역할을 하는 $\alpha-Al_2O_3의 첨가는 균일한 미세구조를 발달시켜 강도의 증진을 가져왔다. nano size의 SiC의 첨가는 $Al_2O_3$의 소결성과 입성장에 영향을 미쳐 파괴강도의 증진을 가져왔다. $Al_2O_3/SiC$ nano-Composite에 SiC plates의 첨가는 파괴강도의 감소를 가져왔지만, 상대적으로 파괴인성은 증진되었다. SiC plates에 nitride (BN, $Si_3N_4$ 코팅을 할 경우 crack deflection을 더욱 유발하여 파괴인성이 증진되었다.

  • PDF

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

식품 접촉 모사 환경에서 식품유사용매의 LDPE-나노 TiO2 복합필름 재질특성 영향 평가 (Effect of Food Simulants on the Properties of LDPE-Nano TiO2 Composite Film in Food Contact Environment)

  • 이우석;최재천;박세종;김미경;고성혁
    • 한국포장학회지
    • /
    • 제23권3호
    • /
    • pp.125-132
    • /
    • 2017
  • The effect of food simulants on properties and light barrier function of LDPE-nano $TiO_2$ composite film has been investigated. LDPE-nano $TiO_2$ composite films were prepared with 5.0wt% $TiO_2$ content by melt-extrusion. To simulate food contact environment, according to KFDA standards and specifications for food utensils, containers and packages, food simulants were selected with deionized water, 50% ethanol, 4% acetic acid and n-heptane and composite films were immersed in each food simulant at $70^{\circ}C$, 30 min except n-heptane ($25^{\circ}C$, 60 min). A variety of material properties, including crystallinity, chemical bonds, surface morphology, mechanical, oxygen barrier and optical properties, of LDPE-nano $TiO_2$ composite film were examined with and without the food simulants treatment. As a result, under regulated migration condition, LDPE-nano $TiO_2$ composite showed extremely stable in all properties tested in the study in contact with food simulants indicating that $TiO_2$ nanoparticles are physicochemically stable and quite compatible with LDPE. Results enable us to anticipate migration of $TiO_2$ will probably not occur. To evaluate influence of migration of $TiO_2$ on food stuffs, their color, pH and acidity were observed as well.

Marginal and internal fit of nano-composite CAD/CAM restorations

  • Park, So-Hyun;Yoo, Yeon-Jee;Shin, Yoo-Jin;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • 제41권1호
    • /
    • pp.37-43
    • /
    • 2016
  • Objectives: The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. Materials and Methods: A full veneer crown and an mesio-occluso-distal (MOD) inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU) and experimental nano-composite CAD/CAM blocks (EB) under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Results: Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000). In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001). Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000). Conclusions: The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.

Spectroscopic and Mechanical Properties of Nano Silica Rubber Composite Material

  • Lee, Jung Kyu;Park, Juyun;Kang, Yong-Cheol;Koh, Sung Wi
    • 통합자연과학논문집
    • /
    • 제9권1호
    • /
    • pp.62-66
    • /
    • 2016
  • To manipulate the mechanical properties of acrylonitrile butadiene rubber (NBR), addition of nano-sized silica on rubber was performed and nano-silica NBR composite (NSR) materials were fabricated by press molding. The effect of volume fraction of silica in the NSR on the spectroscopic and mechanical properties has been studied.

음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가 (Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis)

  • 이원오;이상복;최오영;이진우;변준형
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

Synthesis and Characterization of Branched Sulfonated Poly(Ether Sulfone-ketone) Copolymer and Organic-inorganic Nano Composite Membranes

  • Lee, Dong-Hoon;Park, Hye-Suk;Seo, Dong-Wan;Hong, Tae-Whan;Ur, Soon-Chul;Kim, Whan-Gi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.489-490
    • /
    • 2006
  • Branched sulfonated poly(ether sulfone-ketone) copolymer was prepared with bisphenol A, 4,4-difluorobenzophenone, sulfonated chlorophenyl sulfone (40mole% of bisphenol A) and THPE (1,1,1-tris-p-hydroxyphenylethane). THPE was used 0.4 mol% of bisphenol A to synthesize branched copolymers. Organic-inorganic nano composite membranes were prepared with copolymer and a series of $SiO_2$ nanoparticles (20 nm, 4, 7 and 10 wt%). The composite membranes were cast from dimethylsulfoxide solutions. The films were converted from the salt to acid forms with dilute hydrochloric acid. The membranes were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. Branched copolymer and nano composite membranes exhibit proton conductivities from $1.12{\times}10^{-3}$ to $6.04{\times}10^{-3}\;S/cm^2$, water uptake from 52.9 to 62.4%, IEC from 0.81 to 1.21 meq/g and methanol diffusion coefficients from $1.2{\times}10^{-7}$ to $1.5{\times}10^{-7}\;cm^2/S$.

  • PDF

Mechanical and Tribological Properties of Pulse and Direct Current Electrodeposited Ni-TiO2 Nano Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.283-288
    • /
    • 2010
  • Ni-$TiO_2$ nano composite coatings were fabricated using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current (dc) electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. Pulse electrodeposited composite has exhibited enhancement of (111), (220), and (311) diffraction lines with an attenuation of (200) line. The results demonstrated that the microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as dc electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation in pulse plated composite. Coefficient of friction was also found to be lower in pulse plated composite coatings as compared to dc plated composite coatings.