• Title/Summary/Keyword: Nano-Composite

Search Result 1,025, Processing Time 0.041 seconds

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Cho, Sung-Hun;Woo, Dong-Jin;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.439-443
    • /
    • 2010
  • Nano sized SiC particles (270 nm) are easily agglomerated in nickel sulfamate electrolytic bath during a composite electrodeposition process. The agglomeration of nano particles in composite coatings can significantly reduce the mechanical properties of the composite coatings. In this study, Ni-SiC nano composite coatings were fabricated using a conventional electrodeposition process with the aid of ultrasound. Nano particles were found to be distributed homogeneously with reduced agglomeration in the ultrasonicated samples. Substantial improvements in mechanical properties were observed in the composite coatings prepared in presence of ultrasound over those without ultrasound. Ni-SiC composite coatings were prepared with variable ultrasonic frequencies ranging from 24 kHz to 78 kHz and ultrasonic powers up to 300 watts. The ultrasonic frequency of 38 kHz with ultrasonic power of 200 watt was revealed to be the best ultrasonic conditions for homogeneous dispersion of nano SiC particles with improved mechanical properties in the composite coatings. The microstructures, phase compositions, and mechanical properties of the composite coatings were observed and evaluated using SEM, XRD, Vickers microhardness, and wear test. The Vickers microhardness of composite coatings under ultrasonic condition was significantly improved as compared to the coatings without ultrasound. The friction coefficient of the composite coating prepared with an ultrasonic condition was also smaller than the pure nickel coatings. A synergistic combination of superior wear resistance and improved microhardness was found in the Ni-SiC composite coatings prepared with ultrasonic conditions.

A study on the synthesis and characterization of PI/$\textrm{TiO}_2$ nano-composite (폴리이미드/$\textrm{TiO}_2$ 나노 복합재의 합성 및 특성에 관한 연구)

  • 이중희;이봉신;허석봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.137-140
    • /
    • 2001
  • Oragnic/inorganic hybrid materials prepared by sol-gel method have rapidly become a fasci nating research field in materials science. In this study, Polyimide/$\textrm{TiO}_2$ composites were synthesized from nano-sized anatase $\textrm{TiO}_2$ and two types of Polyimide (BTDA-PPD, PMDA-ODA) by Sol-gel method. Nano-sized $\textrm{TiO}_2$ particles were prepared from $\textrm{TiOEt}_4$ solution. The composites were charcaterized by using XRD, TGA, IR, TEM, and Atomic Force Microscope(AFM). $\textrm{TiO}_2$ nano particles were dispersed well in polyimide matrix and the thermal stability of polyimide was improved with $\textrm{TiO}_2$ nano-sized particles.

  • PDF

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

A Study on the Functionality and Stability of LDPE-Nano ZnO Composite Film (LDPE-나노 ZnO 복합필름의 기능성 및 재질안정성 평가)

  • Lee, Wooseok;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this work, nano ZnO was introduced into low density poly ethylene (LDPE) composites films with various contents (0, 0.5, 1.0, 3.0 and 5.0 wt%) by melt-extrusion. Their basic properties such as crystallinity, chemical bonds and surface morphology were examined by XRD, FTIR and SEM. XRD patterns and FTIR peaks intensity were increased in proportion to the ZnO contents. SEM images showed well dispersed nano ZnO in LDPE composite films. Antimicrobial functionality of LDPE-nano ZnO composite films was also studied and the presence of nano ZnO resulted in significant improvement of antimicrobial functionality compared to the pure LDPE film. To evaluate influence of nano ZnO on LDPE properties required as packaging material, thermal, mechanical, gas barrier and optical properties of LDPE-nano ZnO composite films were characterized with various analytical techniques including TGA, UTM, OTR, WVTR and UV-Vis spectroscopy. As a result, except optical and mechanical properties of LDPE, no significant effects were found in other properties. Opacity of pure LDPE was greatly increased with increasing concentration of nano ZnO and tensile strength was also improved at 0.5wt% ZnO content.

Dielectric Properties of Epoxy/Micro-sized Alumina Composite and of Epoxy/Micro-sized/Nano-sized Alumina Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.338-341
    • /
    • 2015
  • Epoxy/micro-sized alumina composite was prepared, and the effects of alumina content on the dielectric properties were investigated in order to develop an insulation material for gas-insulated switchgears (GIS). Nano-sized alumina (average particle size: 30 nm) was also incorporated into the epoxy/micro-sized alumina composite. Dielectric tests were carried out in ASTM D 150, and capacitance (Cp) and dielectric loss (tanδ) were measured. The dielectric constant increased with increasing alumina content in the epoxy/micro-alumina system and the epoxy/micro-alumina/nano-alumina system. As 1,3-diglycidyl glyceryl ether (DGE) content increased, the dielectric constant decreased and dielectric loss increased. This ocurred as a result of the weak electric field enhancement due to homogeneous dispersion of micro- and nano-sized alumina particles in an epoxy composite.

Permeation Properties of Composite Thin Film for Organic Based Electronic Devices

  • Kim, Kwang-Ho;Kim, Hoon;Lee, Joo-Won;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Jang, Jin;Oh, Myung-Hwan;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.920-923
    • /
    • 2003
  • We fabricated composite materials as a pellet structure with the various kinds of inorganic material powder. The composite materials were deposited onto the plastic film by the electron beam evaporation and water vapor transmission rates (WVTRs) were measured by the MOCON facility. As a result of WVTRs, the composite materials had lower WVTR value than any other inorganic materials. So, these films were proposed to protect the organic light emitting device (OLED) from moisture and oxygen. We can consider that the composite thin-film is one of the more suitable candidates for the thin-film passivation layer in the OLED. And, we are processing the XRD, XPS and EPMA to analyze the property of the composite material. We will also analyze properties of the current-voltage and luminescence for lifetime both the composite thin-film passivated OLED and non-passivated OLED.

  • PDF

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler

  • ElBellihi, Abdelhameed Ahmed;Bayoumy, Wafaa Abdallah;Masoud, Emad Mohamed;Mousa, Mahmoud Ahmed
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2949-2954
    • /
    • 2012
  • Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.