Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.6.338

Dielectric Properties of Epoxy/Micro-sized Alumina Composite and of Epoxy/Micro-sized/Nano-sized Alumina Composite  

Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.6, 2015 , pp. 338-341 More about this Journal
Abstract
Epoxy/micro-sized alumina composite was prepared, and the effects of alumina content on the dielectric properties were investigated in order to develop an insulation material for gas-insulated switchgears (GIS). Nano-sized alumina (average particle size: 30 nm) was also incorporated into the epoxy/micro-sized alumina composite. Dielectric tests were carried out in ASTM D 150, and capacitance (Cp) and dielectric loss (tanδ) were measured. The dielectric constant increased with increasing alumina content in the epoxy/micro-alumina system and the epoxy/micro-alumina/nano-alumina system. As 1,3-diglycidyl glyceryl ether (DGE) content increased, the dielectric constant decreased and dielectric loss increased. This ocurred as a result of the weak electric field enhancement due to homogeneous dispersion of micro- and nano-sized alumina particles in an epoxy composite.
Keywords
Dielectric constant; Dielectric loss; Epoxy/alumina composite; Epoxy nanocomposite; GIS (gas insulated switchgear);
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Imai, F. Sawa, T. Ozaki, T. Shimizu, S. Kuge, M. Kozako, and T. Tanaka, IEEJ Trans. FM, 126, 1136 (2006).   DOI
2 N. Bernard, S. Theoleyre, and G. Valentin, How to Use a Greenhouse Gas While Being Environmentally Friendly: SF6 Case in Medium Voltage Distribution, CIRED (2001).
3 CAPIEL, "Switchgear and SF6 Gas", CAPIEL HV-ESDD1-R1-1.02 (2002).
4 H. Krähling and S. Krömer, “Electricity Supply, using SF6-Technology Life Cycle Assessment” (Solvay Germany, 1999)
5 G. Iyer, R. S. Gorur, R. Richert, A. Krivda, and L. E. Schmidt, IEEE Trans. Dielectr. Electr. Insul., 18, 659 (2011). [DOI: http://dx.doi.org/10.1109/TDEI.2011.5931050]   DOI
6 N. Hayakawa, H. Maeda, S. Chigusa, and H. Okubo, Cryogenics, 40, 167 (2000). [DOI: http://dx.doi.org/10.1016/s0011-2275(00)00024-2]   DOI
7 R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007). [DOI: http://dx.doi.org/10.1016/j.msea.2006.09.077]
8 P. O. Henk, T. W. Kortsen, and T. Kvarts, High Perform. Polym., 11, 281 (1999). [DOI: http://dx.doi.org/10.1088/0954-0083/11/3/304]   DOI