• Title/Summary/Keyword: Nano-Composite

Search Result 1,035, Processing Time 0.028 seconds

Microstructure and Mechanical Properties of Superhard Cr-Si-C-N Coatings Prepared by a Hybrid Coating System (하이브리드 코팅 시스템으로 제조된 초고경도 Cr-Si-C-N 나노복합 코팅막의 미세구조 및 기계적 특성)

  • Jang Chul Sik;Heo Su Jeong;Song Pung Keun;Kim Kwang Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.100-105
    • /
    • 2005
  • Cr-Si-C-N coatings were deposited on steel substrate (SKD 11) by a hybrid system of arc ion plating (AIP) and sputtering techniques. From XRD, XPS, and HRTEM analyses, it was found that Cr-Si-C-N had a fine composite microstructure comprising nano-sized crystallites of Cr(C, N) well distributed in the amorphous phase of $Si_3N_4/SiC$ mixture. Microhardness of Cr(C, N) coatings and Cr-Si-N coatings were reported about $\~22 GPa$ and $\~35 GPa$, respectively. As the Si was incorporated into Cr(C, N) coatings, The Cr-Si-C-N coatings having a Si content of $9.2 at.\%$ showed the maximum hardness value. As increased beyond Si content of $9.2 at.\%$, the interaction between nanocrystallites and amorphous phase was gone, the hardness was reduced as dependent on amorphous phase of $Si_3N_4/SiC$. In addition, the average coefficient of Cr-Si-C-N coatings largely decreased compared with Cr(C, N) coatings.

Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black (탄소나노튜브 및 카본블랙 강화 고무복합재료의 변형에 의한 결정화가 기계적 특성에 미치는 영향)

  • Sung, Jong-Hwan;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.999-1005
    • /
    • 2011
  • The effects of strain-induced crystallization (SIC) on the mechanical properties of elastomeric composites as functions of extension ratio (${\lambda}$), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content are investigated. The differential scanning calorimetry (DSC) analysis shows that the degree of crystallinity increases with the increase in the CB and CNT content. As ${\lambda}$ increases, the glass transition temperature (Tg) of the composites increases, and the latent heat of crystallization (LHc) of the composites is maximum at ${\lambda}$=1.5. It is found that the mechanical properties have a linear relation with LHc, depending on the CNT content. According to the TGA (thermogravimetric analysis), the weight loss of the composite matrix is 94.3% and the weight of the composites decreases with the filler content. The ratio of tensile modulus ($E_{comp}/E_{matrix}$) is higher than that of tensile strength (${\sigma}_{comp}/{\sigma}_{matrix}$) because of the CNT orientation inside the elastomeric composites.

A Study on Vulcanization of EPDM by Far-infrared (원적외선에 의한 EPDM의 가교 특성 연구)

  • Bae, J.W.;Kim, J.S.;Lee, J.H.;Jung, W.S.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Far-infrared vulcanization of ethylene-propylene-diene terpolymer(EPDM) compounds has been studied in comparison with hot air vulcanization. Vulcanization characteristics of EPDM compounds were measured by degree of curing and temperature of specimens in vulcanization process. As a result, degree of curing by far-infrared of EPDM compounds was shown to be higher value than that by hot air at the same vulcanization temperature. Especially, degree of curing by far-infrared on 3 mm thickness of EPDM compounds was increased by two times compared to that by hot air. While the increase of thermal conductivity of EPDM compounds highly improved degree of curing by far-infrared, that hardly improved degree of curing by hot air.

Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles (나노 연/경자성 분말 재료를 이용한 Exchange-coupling 자석의 제조 기술)

  • Kim, Jong-Ryoul;Cho, Sang-Geun;Jeon, Kwang-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.225-230
    • /
    • 2011
  • Magnetic materials has been applied to various fields due to their energy convertible properties between electrical and mechanical energy. Particularly, permanent magnets have been currently attracted much attention because they produce external magnetic field without any electrical current. For high efficiency, a demand for permanent magnets containing rare earth elements has been continuously increased, which abruptly raises the price and causes the supply difficulty of rare earth materials. Therefore, the development of permanent magnets with less or without rare earth elements become a urgent issue. In this report, the current trend and major issues on high efficiency permanent magnets, particularly exchange-coupling magnets, are discussed.

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

Analysis of Variations in the Bonding Strength Characteristics of the AL6061-PBT-Polymer Composite with Injection Parameters (AL6061과 PBT 재료의 인서트 사출공정조건에 따른 접합강도 특성 분석)

  • Jung, Yong-Jun;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.135-141
    • /
    • 2021
  • As a trend of lightening automobiles and electronic products, several studies are currently underway to replace parts of metals with resins. In particular, heterojunctions between metals and resins are now under the spotlight. This study aims to evaluate the variation in bonding strength with process conditions when the polybutylene terephthalate (PBT) polymer is bonded to a specimen of the lightweight 6061 aluminum alloy (AL6061). Conditions of the bonding surface of the AL6061 specimen, the temperature of the injection mold, and the content of the glass fiber were considered to be process variables. Bonded specimens were manufactured for different values of these variables. Bonding strength tests were then performed on these specimens and variations were analyzed in their characteristics corresponding to those of the process conditions. Fractures in these specimens were assessed using scanning electron microscopy (SEM) to assess the fracture surface. This was then used to analyze the fracture shape and determine whether anodizing the specimen led to the development of cracks on the joint surface. Results of the above test indicated that while the surface condition of the specimen and the temperature of the injection mold significantly influenced the strength of bonding, the content of the glass fiber did not.

Surface Modification of Nano Silica Prepared by Sol-gel Process and Subsequent Application towards Gas-barrier Films (졸-겔 공정으로 제조한 나노 실리카의 표면개질 및 가스차단성 필름으로의 응용)

  • Jang, Hyo Jun;Chang, Mi Jung;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.68-73
    • /
    • 2019
  • We prepared hydrophobic silica particles by a sol-gel process from tetraethyl orthosilicate (TEOS), followed by coupling the reaction with octyltrimethoxysilane (OTMS) or hexadecyltrimethoxysilane (HDTMS) under various reaction conditions. We confirmed the extent of silica surface modification with organic compounds by SEM-EDS, thermogravimetry and elemental analysis. The silica particles obtained after the hydrolysis reaction of TEOS in ethanol at $50^{\circ}C$ for 24 h and the coupling reaction with OTMS for 2 h at the same temperature displayed the optimum performance in terms of the dispersity in an organic solvent and the surface roughness of films composited with epoxy resins. The oxygen permeability of the composite film with modified-silica was 12% lower than that of using the film without modified-silica.

Surface properties and interception behaviors of GO-TiO2 modified PVDF hollow fiber membrane

  • Li, Dongmei;Liang, Jinling;Huang, Mingzhu;Huang, Jun;Feng, Li;Li, Shaoxiu;Zhan, Yongshi
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • To investigate surface properties and interception performances of the new modified PVDF membrane coated with Graphene Oxide (GO) and nano-$TiO_2$ (for short the modified membrane) via the interface polymerization method combined with the pumping suction filtration way, filtration experiments of the modified membrane on Humic Acid (HA) were conducted. Results showed that the contact angle (characterizing the hydrophilicity) of the modified membrane decreased from $80.6{\pm}1.8^{\circ}$ to $38.6{\pm}1.2^{\circ}$. The F element of PVDF membrane surface decreased from 60.91% to 17.79% after covered with GO and $TiO_2$. O/C element mass ratio has a fivefold increase, the percentage of O element on the modified membrane surface increased from 3.83 wt% to 20.87%. The modified membrane surface was packed with hydrophilic polar groups (like -COOH, -OH, C-O, C=O, N-H) and a functional hydrophilic GO-polyamide-$TiO_2$ composite configuration. This configuration provided a rigid network structure for the firm attachment of GO and $TiO_2$ on the surface of the membrane and for a higher flux as well. The total flux attenuation rate of the modified membrane decreased to 35.6% while 51.2% for the original one. The irreversible attenuation rate has dropped 71%. The static interception amount of HA on the modified membrane was $158.6mg/m^2$, a half of that of the original one ($295.0mg/m^2$). The flux recovery rate was increased by 50%. The interception rate of the modified membrane on HA increased by 12% approximately and its filtration cycle was 2-3 times of that of the original membrane.

Studies on Preparation and Performance of Poly(acrylonitrile) Nano-composite Hollow Fiber Membrane through the Coating of Hydrophilic Polymers (친수성 고분자의 코팅을 통한 Poly(acrylonitrile) 나노복합중공사막의 제조 및 성능 연구)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.140-146
    • /
    • 2019
  • In this study, a selective layer of poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) was formed by layer-by-layer method onto a porous polyacrylonitrile (PAN) hollow fiber membrane as the suppoter membrane. The salting out method was used by adding Mg salt to the coating solution. Several experimental conditions of the ionic strength, polymer concentration, and coating time were investigated, and the flux and rejection were measured at the operating pressure of 2 atm for 100 mg/L of NaCl, $MgCl_2$, and $CaSO_4$ as the feed solution. The membranes coated with PSSA 20,000 ppm, coating time 3 minutes, ionic strength 1.0, PEI 30,000 ppm, coating time 1 minute, and ionic strength 0.1 were observed the best. In the 100 ppm NaCl, $MgCl_2$, and $CaSO_4$ feed solutions, the flux of 20.4, 19.4, and 18.7 LMH, and the rejection of 67, 90, and 66.6%, respectively.