• Title/Summary/Keyword: Nano solution

Search Result 1,208, Processing Time 0.031 seconds

Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting (고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향)

  • Junhyub Jeon;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2024
  • We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Quality Characteristics of Spray Drying Microparticulated Calcium after Wet-grinding (습식분쇄하여 분무건조한 초미세 분말 칼슘의 품질특성)

  • Han, Min-Woo;Youn, Kwang-Sup
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.657-661
    • /
    • 2009
  • Liquid microparticulated seaweed calcium was manufactured via a wet grinding process. Thereafter, different forming agents such as cyclodextrin, gum arabic, and Na-caseinate were added to the liquid calcium, which was then spray-dried to investigate the quality of the powdered calcium treatments. The moisture contents of samples were approximately 2%. It was also determined that the different kinds of forming agents did not affect the spray drying efficiency. In addition, calcium solubility was the highest in a solution of pH 2. In buffer solution and vinegar, the powdered calcium made with gum arabic showed the highest solubility among the treatments. The calcium contents of all the powdered microparticulate seaweed calcium samples were about 28%, and calcium content was not affected by the forming agents. The spray-dried calcium powder made by spray drying with gum arabic had the highest water vapor uptake, whereas the seaweed calcium was stable in terms of water adsorption. The results of SEM observations indicated that a portion of the spray-dried calcium powders were in nano-scale after wet-grinding. Among the treatments, the use of saccharides as a forming agent resulted in the most uniform particle distribution after spray-drying.

Study on the Hollow Fiber Nano-composite Membrane Preparation onto the Porous PVDF Membrane Surfaces using the Interfacial Polymerization (다공성 PVDF 막의 polyamide 계면중합법처리를 통한 나노 중공사 복합막 제조 연구)

  • Kang, Su Yeon;Cho, Eun Hye;Kim, Ihl hyung;Kim, Cheong Sik;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • The composite membranes were prepared on the surface of hydrophobic porous poly (vinylidene fluoride) (PVDF) hollow fiber membranes through the interfacial polymerization. The preparation variables were the concentrations of piperazine (PIP), trimesoyl chloride (TMC) and the contents of polyethylene glyco l (PEG). The separation characterization of the resulting membranes were carried out for aqueous 100 ppm solution of NaCl, $CaSO_4$, and $MgCl_2$ and also mixed 300 ppm solution of NaCl and $CaSO_4$ in terms of the flux and rejection. Both the flux and rejection were the highest when the interfacial polymerization was conducted using TMC. When TMC concentration was 0.1 wt%, the flux and rejection were shown 48.3 LMH ($L/m^2{\cdot}hr$) and 59%, respectively. To improve the flux, the annealing post-treatment and the addition of PEG into piperazine were done. As expected, the overall flux was enhanced while the rejection was reduced.

Effectiveness and Preparation of Microsome containing Fermented Squalene (발효 스쿠알렌을 함유한 마이크로좀의 제조 및 효능효과)

  • Kim, Ye-Jin;Kim, Tae-Hyun;Cho, Heui-Kyoung;Seong, Nak-Jun;Kim, In-Young;Yoo, Kwang-Ho;Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1159-1170
    • /
    • 2020
  • In this study, to improve the stability of fermented squalene developed using microorganisms, Microsome-SQ20 was prepared, and its physical behavior, properties, and efficacy were studied. The appearance of Microsome-SQ20 was a transparent liquid, no smell, and had a specific smell. The color was a transparent liquid, and the specific gravity was 0.928 and the pH was 5.82 (20% solution), forming a nano-emulsion suitable for use in cosmetics. It was confirmed that the content of the main component of squalene was 20.05%, which was stably sealed. The particle size measured by 0.1% aqueous solution of Microsome-SQ20 was 134.8 nm to obtain a bluish emulsified phase. The antioxidant effects of F-SQ and MF-SQ by DPPH radicals were 80.72% and 81.5%, respectively, showing superior effects compared to L-ascorbic acid. The cell viability of squalene (SQ), fermented squalene (F-SQ) and microsome squalene (MF-SQ) was at 10 ppm, respectively, showing 121.2%, 150.3%, and 129.9% cell viability. It was found that SQ, F-SQ, and MF-SQ had an elastase inhibitory ability of 8.7%, 10.33% and 8.7% at 10 ppm, respectively. In addition, the inhibitory ability of MMP-1 was 1.55%, 41.44%, 31.79% at 10 ppm for SQ, F-SQ, and MF-SQ, respectively, indicating that F-SQ significantly reduced the MMP-1 expression.

Synthesis and Characterization of Interfacial Properties of a Cationic Surfactant Having Three Hydroxyl Groups (세 개의 히드록실기를 가진 양이온 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Byung Min;Kim, Ji-Hyun;Kim, Sung Soo;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.433-439
    • /
    • 2012
  • In this study, a cationic surfactant BHMAS (N,N-bis-(3'-n-dodecyloxy-2'-hydroxypropyl)-N-methyl-2-hydroxyethylammonium methyl sulfate) having two lauryl and three hydroxyl groups was synthesized by the reaction of n-dodecyl glycidyl ether and 2-aminoethanol followed by the quarternization with dimethyl sulfate. The structure of the product was elucidated by $^{1}H-NMR$ and FT-IR. The CMC (critical micelle concentration) and surface tension of BHMAS at CMC condition were found to be $9.12\;{\times}\;10^{-4}$ mol/L and 28.71 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer indicated that a relatively long time was required to saturate the interface between air and aqueous surfactant solution. The interfacial tension measured between 1 wt% surfactant solution and n-decane reached an equilibrium value of 0.045 mN/m in 5 min. The adsorption capacity of the synthesized surfactant was observed to be excellent, which suggests that the surfactant can be used as a softening agent during a laundry process.

Photoluminescence Characteristics of Fine-sized Gd2O3:Eu Phosphor Powders Prepared by Spray Pyrolysis (분무열분해 공정에 의해 합성된 미세 Gd2O3:Eu 형광체의 발광 특성)

  • Jung, Dae Soo;Koo, Hye Young;Lee, Sang Ho;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1075-1080
    • /
    • 2008
  • Fine-sized $Gd_2O_3:Eu$ phosphor powders were prepared by post-treatment of the precursor powders with hollow shape obtained by spray pyrolysis from the spray solution with citric acid and flux material. Citric acid enabled the synthesis of fine-sized phosphor powders after post-treatment by increasing the hollowness of the precursor powders. The phosphor powders prepared from the spray solution without citric acid had several microns size. Flux materials increased the mean sizes of the phosphor powders. However, flux materials improved the photoluminescence intensities of the phosphor powders under ultraviolet. $Li_2CO_3$ as the flux material was appropriate to prepare the fine-sized $Gd_2O_3:Eu$ phosphor powders with high photoluminescence intensity. The phosphor powders below 3 wt% $Li_2CO_3$ of phosphor had submicron sizes after post-treatment temperatures of $1,050^{\circ}C$ and $1,150^{\circ}C$. The photoluminescence intensity of the phosphor powders post-treated at $1,150^{\circ}C$ was 124% of that of the phosphor powders post-treated at $1,050^{\circ}C$.

Microstructure analyses of aluminum nitride (AlN) using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) (투과전자현미경과 전자후방산란회절을 이용한 AlN의 미세구조 분석)

  • Joo, Young Jun;Park, Cheong Ho;Jeong, Joo Jin;Kang, Seung Min;Ryu, Gil Yeol;Kang, Sung;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.127-134
    • /
    • 2015
  • Aluminum nitride (AlN) single crystals have attracted much attention for a next-generation semiconductor application because of wide bandgap (6.2 eV), high thermal conductivity ($285W/m{\cdot}K$), high electrical resistivity (${\geq}10^{14}{\Omega}{\cdot}cm$), and high mechanical strength. The bulk AlN single crystals or thin film templates have been mainly grown by PVT (sublimation) method, flux method, solution growth method, and hydride vapor phase epitaxy (HVPE) method. Since AlN suffers difficulty in commercialization due to the defects that occur during single crystal growth, crystalline quality improvement via defects analyses is necessary. Etch pit density (EPD) analysis showed that the growth misorientations and the defects in the AlN surface exist. Transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) analyses were employed to investigate the overall crystalline quality and various kinds of defects. TEM studies show that the morphology of the AlN is clearly influenced by stacking fault, dislocation, second phase, etc. In addition EBSD analysis also showed that the zinc blende polymorph of AlN exists as a growth defects resulting in dislocation initiator.

Fabrication of super hydrophilic TiO2 thin film by a liquid phase deposition (액상증착법에 의한 초친수 TiO2 박막 제조)

  • Jung, Hyun-Ho;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.227-231
    • /
    • 2010
  • Super hydrophilic $TiO_2$ thin films with photocatalytic property were successfully fabricated on a glass substrate by liquid phase deposition (LPD). The $TiO_2$ thin film formed nano particles on a surface at $70^{\circ}C$. As an immersion time in $TiF_4$ solution increased, the thickness of thin films gradually increased. $TiO_2$ thin film showed a water contact angel of below ca. $5^{\circ}$ and the transmittance of ca. 75~90 % in visible range. In addition, $TiO_2$ thin film showed the photocatalytic property to decompose methyl orange solution by the illumination of UV light. The surface morphologies, optical properties and contact angel of prepared thin films with a different immersion time were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

Cu2ZnSn(S,Se)4 Thin Film Solar Cells Fabricated by Sulfurization of Stacked Precursors Prepared Using Sputtering Process

  • Gang, Myeng Gil;Shin, Seung Wook;Lee, Jeong Yong;Kim, Jin Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.97-97
    • /
    • 2013
  • Recently, Cu2ZnSn(S,Se)4 (CZTSS), which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTSS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of 104 cm-1, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTSS based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. I will briefly overview the recent technological development of CZTSS thin film solar cells and then introduce our research results mainly related to sputter based process. CZTSS thin film solar cells are prepared by sulfurization of stacked both metallic and sulfide precursors. Sulfurization process was performed in both furnace annealing system and rapid thermal processing system using S powder as well as 5% diluted H2S gas source at various annealing temperatures ranging from $520^{\circ}C$ to $580^{\circ}C$. Structural, optical, microstructural, and electrical properties of absorber layers were characterized using XRD, SEM, TEM, UV-Vis spectroscopy, Hall-measurement, TRPL, etc. The effects of processing parameters, such as composition ratio, sulfurization pressure, and sulfurization temperature on the properties of CZTSS absorber layers will be discussed in detail. CZTSS thin film solar cell fabricated using metallic precursors shows maximum cell efficiency of 6.9% with Jsc of 25.2 mA/cm2, Voc of 469 mV, and fill factor of 59.1% and CZTS thin film solar cell using sulfide precursors shows that of 4.5% with Jsc of 19.8 mA/cm2, Voc of 492 mV, and fill factor of 46.2%. In addition, other research activities in our lab related to the formation of CZTS absorber layers using solution based processes such as electro-deposition, chemical solution deposition, nano-particle formation will be introduced briefly.

  • PDF