• Title/Summary/Keyword: Nano sol

Search Result 323, Processing Time 0.019 seconds

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application (슬러지 폐기물을 활용한 반도체급 균일한 콜로이달 실리카 나노입자의 제조 및 CMP 응용)

  • Kim, Dong Hyun;Kim, Jiwon;Jekal, Suk;Kim, Min Jeong;Kim, Ha-Yeong;Kim, Min Sang;Kim, Sang-Chun;Park, Seon-Young;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.5-12
    • /
    • 2022
  • This study suggests the effective recycling method of sludge waste from various industrial fields to synthesize uniform colloidal silica nanoparticles. In detail, polymers are removed from the sludge waste to attain sludge-extracted silica (s-SiO2) micron-sized particles, and ammonia assisted sonication is applied to s-SiO2, which has effectively extracted the silanol precursor. The nano-sized silica (n-SiO2) particles are successfully synthesized by a typical sol-gel method using silanol precursor. Also, the yield amounts of n-SiO2 are determined by the function of s-SiO2 etching time. Finally, n-SiO2-based slurry is synthesized for the practical CMP application. As a result, rough-surfaced semiconductor chip is successfully polished by the n-SiO2-based slurry to exhibit the mirror-like clean surface. In this regard, sludge wastes are successfully prepared as valuable semicondutor grade materials.

1H Solid-state NMR Methodology Study for the Quantification of Water Content of Amorphous Silica Nanoparticles Depending on Relative Humidity (상대습도에 따른 비정질 규산염 나노입자의 함수량 정량 분석을 위한 1H 고상 핵자기 공명 분광분석 방법론 연구)

  • Oh, Sol Bi;Kim, Hyun Na
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The hydrogen in nominally anhydrous mineral is known to be associated with lattice defects, but it also can exist in the form of water and hydroxyl groups on the large surface of the nanoscale particles. In this study, we investigate the effectiveness of 1H solid-state nuclear magnetic resonance (NMR) spectroscopy as a robust experimental method to quantify the hydrogen atomic environments of amorphous silica nanoparticles with varying relative humidity. Amorphous silica nanoparticles were packed into NMR rotors in a temperature-humidity controlled glove box, then stored in different atmospheric conditions with 25% and 70% relative humidity for 2~10 days until 1H NMR experiments, and a slight difference was observed in 1H NMR spectra. These results indicate that amount of hydrous species in the sample packed in the NMR rotor is rarely changed by the external atmosphere. The amount of hydrogen atom, especially the amount of physisorbed water may vary in the range of ~10% due to the temporal and spatial inhomogeneity of relative humidity in the glove box. The quantitative analysis of 1H NMR spectra shows that the amount of hydrogen atom in amorphous silica nanoparticles linearly increases as the relative humidity increases. These results imply that the sample sealing capability of the NMR rotor is sufficient to preserve the hydrous environments of samples, and is suitable for the quantitative measurement of water content of ultrafine nominally anhydrous minerals depending on the atmospheric relative humidity. We expect that 1H solid-state NMR method is suitable to investigate systematically the effect of surface area and crystallinity on the water content of diverse nano-sized nominally anhydrous minerals with varying relative humidity.