• Title/Summary/Keyword: Nano silica

Search Result 410, Processing Time 0.024 seconds

Synthesis of complex nanoparticles using bioceramic silica (바이오 세라믹 실리카를 이용한 복합 나노입자 구조체의 합성)

  • Yoon, Seokyoung;Lee, Jung Heon
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 2018
  • Here, we introduce various type of inorganic nanostructure synthesized with functional nanoparticles and silica. From two decades ago, functional inorganic nanoparticles have been synthesized and highlighted, now we moved to next level of wet-chemical synthesis. By integrating functional nanoparticles with silica, we were able to synthesize multi-functional nanostructure, which expand the applications of nanoparticles to catalyst, drug carrier, sensors. In this context, silica has been spotlighted due to its versatility. Silica has highly biocompatible, relatively transparent and stable under harsh conditions. Thus it can be used as good supporter to synthesize complex multi-functional nanostructure when mixed with other functional nanoparticles. A various shape of complex nanostructures have been synthesized including core-shell type, yolk-shell type and janus type etc. In this paper, we have described the purposes of synthesizing silica noncomplex and various case studies for biomedical applications and self-assembly.

The Control of Electrostatic Characteristics in Toner Type Paper-like Display

  • Lee, Sung-Guk;Kwon, Soon-Hyung;Cho, Won-Ki;Song, Moon-Bong;Kim, Young-Woon
    • Journal of Information Display
    • /
    • v.8 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • The toner type paper-like display (PLD) has been developed with two polymer particles having opposite polarity composed of polymer, colorant and external additives (nano-sized silica). Nano-sized silica with triboelectric charge was used for the charge control agent (CCA) and influenced on the electrostatic properties of the silica-coated polymer particles. The surface morphology and the cohesiveness of silica-coated polymer particles were changed with the silica coating time. From these results, it was verified that the PLD cell using silica-coated particles (200 seconds) shows a good white appearance and low driving voltage.

Experimental Study on the Setting Time and Compressive Strength of Nano-Micro Pozzolanic Binders as Cement Composites (포졸란 혼화재의 입자 크기 및 비표면적에 따른 응결시간 발현 및 압축강도 특성 평가)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.269-275
    • /
    • 2022
  • In this study, the setting time and compressive strength of cement paste composites applied with nano-micro pozzolanic binders were experimental analyzed. The pozzolanic binder was reduced initial and final setting time and the compressive strength was increased. Micro silica was effective in decrease the initial setting and final setting time and impressing the compressive strength. When two or more cement binders were used, the using of silica fume and a small amount of nano silica at reduced the setting time to 62-64 % to OPC cement and the compressive strength was increased to 117 %. A small amount of mixing the nano silica was effect to pore filling and pozzolanic activation. However, the addition of a chemical admixture should be considered when mixing table design because pozzolanic binders high specific surface area causes a decrease in cement composites flow.

Dielectric Properties for Surface Modified Micro-Nano Silica Composites of Cycloaliphatic Epoxy (지환식 에폭시/표면개질된 마이크로-나노실리카 콤포지트의 유전특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1840-1847
    • /
    • 2016
  • The surface of nanosilica and microsilica was modified in order to develop a high voltage insulation material for outdoor application. The modified silicas were well dispersed in an aliphatic cyclic epoxy resin. Dielectric properties were studied for 8 kinds of specimens: 1 kind of neat epoxy, 3 kinds of epoxy/microsilica composites, and 4 kinds of epoxy/microsilica/nanosilica composites. Complex dielectric constants were measured in the range of 10-2~1.2 Hz at room temperature.

Synthesis of Copoly(amide-imide)s Based on Silica Nano Particles-polyacrylamide

  • Min, Jun Ho;Park, Chan Young;Min, Seong Kee
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.138-146
    • /
    • 2016
  • It is an inconvenience for silica nano-particles to dry again when using it in that they cohere each other through moisture in the air. Acrylamide groups were introduced to improve such inconvenience and copolymerized with silica nano-particles and then we copolymerized again with polyamic acid in order to increase thermal characteristic. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2,6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA), using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were researched by FT-IR and XRD analyses and the analysis of surface characteristic groups was conducted via XPS. A change in thermal properties was examined through DSC and TGA and solubility for solvents was also researched.

The development of highly functional paints improving NIR reflectance by investigating silica particles size for pigment mixing (안료배합용 실리카 입자사이즈에 따른 근적외선 반사율을 향상시킨 고기능성 도료 제조)

  • Eunseok Woo;Yunseok Noh;Jinho Lee;Yong-Wook Choi;Bora Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.98-104
    • /
    • 2024
  • In order to overcome the urban heat island effect, highly functional paint is attracting attention as a promising means by shielding heat on the structure (building) surface. When a paint was prepared containing nano-sized silica particles, the heat-insulating performance was relatively higher than that of paints with other sizes. In addition, developed paints showed enhanced properties such as chemical resistance and abrasion resistance test because of the presence of nano-sized silica included in functional paint.

Nano-engineered concrete using recycled aggregates and nano-silica: Taguchi approach

  • Prusty, Rajeswari;Mukharjee, Bibhuti B.;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.253-268
    • /
    • 2015
  • This paper investigates the influence of various mix design parameters on the characteristics of concrete containing recycled coarse aggregates and Nano-Silica using Taguchi method. The present study adopts Water-cement ratio, Recycled Coarse Aggregate (%), Maximum cement content and Nano-Silica (%) as factors with each one having three different levels. Using the above mentioned control parameters with levels an Orthogonal Array (OA) matrix experiments of L9 (34) has selected and nine number of concrete mixes has been prepared. Compressive Strength, Split Tensile Strength, Flexural Tensile Strength, Modulus of Elasticity and Non-Destructive parameters are selected as responses. Experimental results are analyzed and the optimum level for each response is predicted. Analysis of 28 days CS depicts that NS (%) is the most significant factor among all factors. Analysis of the tensile strength results indicates that the effect of control factor W/C ratio is ranked one and then NS (%) is ranked two which suggests that W/C ratio and NS (%) have more influence as compared to other two factors. However, the factor that affects the modulus of elasticity most is found to be RCA (%). Finally, validation experiments have been carried out with the optimal mixture of concrete with Nano-Silica for the desired engineering properties of recycled aggregate concrete. Moreover, the comparative study of the predicted and experimental results concludes that errors between both experimental and predicted values are within the permissible limits. This present study highlights the application of Taguchi method as an efficient tool in determining the effects of constituent materials in mix proportioning of concrete.

Convective Deposition of Silica Nano-Colloidal Particles and Preparation of Anti-Reflective Film by Controlling Refractive Index (콜로이드 실리카 나노입자의 부착에 의한 반사방지막 제조 및 굴절율 조절)

  • Hwang Yeon;Prevo Brian;Velev Orlin
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.285-292
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloids. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were convectively stacked to form a film onto the substrate as the water evaporates. As the sliding speed increased, the thickness of the film decreased and the wavelength at the maximum transmittance decreased. The microstructure observed by SEM showed that silica particles were nearly close packed, which enabled the calculation of the effective refractive index of the film. The film thickness was measured by proffer and calculated from the wavelength of maximum transmittance and the effective refractive index. The effective refractive index of the film could be controlled by a subtle controlling of the coating speed and by mixing two different sized silica particles. When the 100 nm and 50 m particles were mixed at 4:1-5:1 volume ratio, the maximum transmittance of $95.2\%$ for one-sided coating was obtained. This is the one that has increased by $3.8\%$ compared to bare glass substrate, and shows that $99.0\%$ of transmittance or $1.0\%$ of reflectance can be achieved by the simple process if both sides of the substrate are coated.

Inhibition effect of silica nanoparticle on the oxygen uptake rate of activated sludge (실리카 나노입자에 의한 활성슬러지 활성도 저해 효과 분석)

  • Lee, Soo Mi;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Nanotechnology has become one of the fastest developing technologies and recently applied to a variety of industries. Thus, increasing number of nano materials including various nanoparticles would be discharged into wastewater and consequently entering a biological wastewater treatment process. However, the impact of the nano particles on biological wastewater treatment has not been estimated intensively. In this research, we investigated the effect of silica nanoparticle on the oxygen uptake rates (OURs) of activated sludge used in a conventional wastewater treatment process. The inhibition (%) values were estimated from the results of OURs experiments for the silica nanoparticles with various sizes of 10-15, 45-50, and 70-100 nm and concentrations of 50, 250, and 500 ppm. As results, the inhibition value was increased as the size of silica nano particles decreased and the injected concentration increased. The maximum inhibition value was investigated as 37.4 % for the silica nanoparticles with the size of 45-50 nm and concentration of 50 ppm. Additionally, the effect of size and concentration on the inhibition should be considered cautiously in case that the aggregation of particles occurred seriously so that the size of individual particles was increased in aquatic solution.

Characteristics of Energy Dissipation in Vibration Absorbing Nano-Damper According to the Architecture of Silica Particle (세라믹 분말의 입자구조에 따른 나노 진동 흡수장치의 에너지 소산 효율 특성에 대한 연구)

  • Moon, Byung-Young;Kim, Heung-Seob
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.144-149
    • /
    • 2003
  • This study shows an experimental investigation of a reversible nano colloidal damper, which is statically loaded. The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pore and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices. Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated. As a result, he proposed nano damper is effective one, which can be replaced the conventional damper.