• Title/Summary/Keyword: Nano plates

Search Result 149, Processing Time 0.027 seconds

Thermal post-buckling measurement of the advanced nanocomposites reinforced concrete systems via both mathematical modeling and machine learning algorithm

  • Minggui Zhou;Gongxing Yan;Danping Hu;Haitham A. Mahmoud
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.623-638
    • /
    • 2024
  • This study investigates the thermal post-buckling behavior of concrete eccentric annular sector plates reinforced with graphene oxide powders (GOPs). Employing the minimum total potential energy principle, the plates' stability and response under thermal loads are analyzed. The Haber-Schaim foundation model is utilized to account for the support conditions, while the transform differential quadrature method (TDQM) is applied to solve the governing differential equations efficiently. The integration of GOPs significantly enhances the mechanical properties and stability of the plates, making them suitable for advanced engineering applications. Numerical results demonstrate the critical thermal loads and post-buckling paths, providing valuable insights into the design and optimization of such reinforced structures. This study presents a machine learning algorithm designed to predict complex engineering phenomena using datasets derived from presented mathematical modeling. By leveraging advanced data analytics and machine learning techniques, the algorithm effectively captures and learns intricate patterns from the mathematical models, providing accurate and efficient predictions. The methodology involves generating comprehensive datasets from mathematical simulations, which are then used to train the machine learning model. The trained model is capable of predicting various engineering outcomes, such as stress, strain, and thermal responses, with high precision. This approach significantly reduces the computational time and resources required for traditional simulations, enabling rapid and reliable analysis. This comprehensive approach offers a robust framework for predicting the thermal post-buckling behavior of reinforced concrete plates, contributing to the development of resilient and efficient structural components in civil engineering.

Study on the Drag Reduction of 2-D Dimpled-Plates (딤플을 적용한 평판에 대한 항력 감소 연구)

  • Paik, Bu-Geun;Pyun, Young-Sik;Kim, Jun-Hyung;Kim, Kyung-Youl;Kim, Ki-Sup;Jung, Chul-Min;Kim, Chan-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.333-339
    • /
    • 2012
  • The main objective of the present study is to investigate the roles of the micro-dimpled surface on the drag reduction. To investigate the effectiveness of the micro-dimpled surface, the flat plates are prepared. The micro-size dimples are directly carved on the metal surface by ultrasonic nano-crystal surface modification (UNSM) method. Momentum of the main flow is increased by the dimple patterns within the turbulent boundary layer (TBL), however, there is no significant change in the turbulence intensity in the TBL. The influence of dimple patterns is examined through the flow field survey near the flat plate trailing edge in terms of the profile drag. The wake flow velocities in the flat plate are measured by PIV technique. The maximum drag reduction rate is 4.6% at the Reynolds number of $10^6{\sim}10^7$. The dimples tend to increase the drag reduction rate consistently even at high Reynolds number range.

Accurate Interpretation of Electron Diffraction Data Acquired by Imaging Plates (Imaging Plate에 기록된 전자회절자료의 해석)

  • Kim, Young-Min;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.195-204
    • /
    • 2003
  • The Experimental calibration method has been investigated to correct d-spacing estimation and to identify phases in the electron diffraction data acquired by imaging plates. When the diffraction data from the imaging plate was corrected by the d-spacing calibration method with the radial intensity distribution plotting in this experiment, The accuracy of d-spacing estimation was significantly increased in errors of about 0.5%. The experimental calibration equation followed up the first order exponential decay function was derived from the trace of d-spacing deviation between the measured and the calculated values. It was applied to the analysis of d-spacing and the phase identification of the transitional phases formed from [001] gibbsite specimen by electron beam irradiation effect. In this case more accurate phase identification and d-spacing evaluation is possible for the transitional phases whose diffraction patterns are complicatedly superimposed. It is concluded that ${\chi}$-alumina, ${\gamma}$-alumina and ${\sigma}$-alumina are clearly identified as the major transitional phases formed from gibbsite by electron beam irradiation for 120 min.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

Comparison Study of Polymer and Ti Sol-Gel Carbon Coating on Ti for PEMFC Bipolar Plates (고분자전해질 연료전지용 Ti 분리판을 위한 고분자와 Ti Sol-Gel 탄소코팅의 비교 연구)

  • Won-Seog Yang;Jae-Ho Lee;Hee-Suk Roh;Ju-Hyun Yoo;Chul-Min Park;Su-Yeon Lee;Sung-Mo Moon
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.447-456
    • /
    • 2023
  • In this work, we performed a comparative study examining two coatings on Ti Gr.1 for use in fuel cell bipolar plates. The coatings consisted of carbon black as the conductor along with acrylic polymer and Ti Sol-Gel binder as the binder. Ti Sol-Gel that had precipitated as TiO2 in areas impregnated between carbon black gaps, thereby acting as a binder for carbon black and serving as a polymer coating. Neither of the coatings peeled off during the 90° bend test to check formability. The contact resistance of the TiO2 coating was found to be lower than that of the polymer binder coating. Moreover, due to coating shrinkage (denser) that occurred during the heat treatment process, the TiO2 binder coating showed almost the same level of corrosion resistance, as measured by potentiostatic and EIS tests, despite being thinner than the polymer coating. However, both the polymer binder coating and the TiO2 binder coating had many pores and irregularities internally (around 10 ~ 100 nm) and on the surface (0.1 ~ 2 ㎛). We considered that these pores and irregularities contributed to the lower corrosion resistance.

Change of Mechanical Properties of Clad Steel According to the Welding Process Design (용접 공정 디자인에 따른 클래드강의 기계적 성질 변화)

  • Lee, Jung-Hyun;Park, Jaw-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.372-379
    • /
    • 2013
  • In this study, we investigated the traits of the clad metals used in hot-rolled clad steel plates. We examined the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516) under the specific circumstances of post heat treatment and whether a weld was multilayered and thick or repeated because of repairs. The test conditions were as follows. The clad steel plates were butt-welded using FCAW/SAW, and the heat treatment was conducted at $625^{\circ}C$, for 80, 160, 320, 640, or 1280 min. The change in the corrosion resistance was evaluated in these specimens. In the case of the carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro- hardness gradually increased and then decreased after 640 min. The elongation and contraction of the area increased gradually. An oxalic acid etch test and EPR test on STS316, a clad metal, showed a STEP structure and no sensitization. From the test results for the multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. In summary, the purpose of this study was to suggest some considerations when developing on-site techniques and evaluate the sensitization of stainless steels.

Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment

  • Yujie Zhang;Zhihang Guo;Yimin Gong;Jianzhong Shi;Mohamed Hechmi El Ouni;Farhan Alhosny
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.175-189
    • /
    • 2023
  • The under-evaluation structure includes a functionally graded porous (FGP) core which is confined by two piezoelectric carbon nanotubes reinforced composite (CNTRC) layers. The whole structure rests on the Pasternak foundation. Using quasi-3D hyperbolic shear deformation theory, governing equations of a sandwich plate are driven. Moreover, face sheets are subjected to the electric field and the whole model is under thermal loading. The properties of all layers alter continuously along with thickness direction due to the CNTs and pores distributions. By conducting the current study, the results emerged in detail to assess the effects of different parameters on buckling of structure. As instance, it is revealed that highest and lowest critical buckling load and consequently stiffness, is due to the V-A and A-V CNTs dispersion type, respectively. Furthermore, it is revealed that by porosity coefficient enhancement, critical buckling load and consequently, stiffness reduces dramatically. Current paper results can be used in various high-tech industries as aerospace factories.

Surface Modification of TiO2 Thin Films by N2 Atmospheric Plasma and Evaluation of Photocatalytic Activity (질소 상압플라즈마를 이용한 TiO2 박막의 표면개질 및 광활성 평가)

  • Lim, Gyeong-Taek;Kim, Kyung Hwan;Park, Jun;Kim, Kyoung Seok;Park, Yu Jeoung;Song, Sun-Jung;Kim, Jong-Ho;Cho, Dong Lyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.402-406
    • /
    • 2009
  • $TiO_2$ thin films were surface-modified with atmospheric plasma and their photocatalytic activities were evaluated. The films were deposited on glass plates by dip-coating in a $TiO_2$ sol-gel solution and sintered at various temperatures for various times. Nitrogen plasma was used for the modification and the experiments were carried out varying operational parameters such as discharge power and treatment time. Photocatalytic activity was evaluated based on the degradation efficiency of methylene blue (MB) under irradiation of UV-A and fluorescent light. According to XPS analysis, a little amount of nitrogen was found to be doped in the film surface after the modification. As a result, photocatalytic activity increased under irradiation of UV-A and fluorescent light, especially fluorescent light.

Evaluation of Corrosion Resistance and Weldability for the Butt Welding Zone of Hot Rolled Clad Steel Plates (열간압연 클래드강의 맞대기용접부 내식성 및 용접성 평가)

  • Park, Jae-Won;Lee, Chul-Ku
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • We have investigated the traits of clad metals in hot-rolled clad steel plates, including the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516), under various specific circumstances regarding post heat treatment, multilayered welds, and thick or repeated welds for repair. For evaluations, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by micro vickers hardness, tensile, and etching tests the results were compared with those of EPR tests. The clad steel plates were butt-welded using FCAW and SAW with the time of heat treatment as the variable, a that was conducted at $625^{\circ}C$, for 80, 160, 320, 640, and 1280 min. Then, the change in corrosion resistance was evaluated in these specimens. With carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro-hardness gradually increased and decreased after 640 min. The elongation and contraction of the area also increased gradually. The oxalic acid etch test and EPR test on STS316 and the clad metal showed STEP structure and no sensitization. From the test results on multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. The purpose of this study was to suggest some considerations for developing on-site techniques to evaluate the sensitization of stainless steels.