• 제목/요약/키워드: Nano pattern

검색결과 478건 처리시간 0.041초

패턴 롤 스템퍼를 이용한 연속 UV 나노 임프린팅 공정기술 개발 (Development of Continuous UV Nano Imprinting Process Using Pattern Roll Stamper)

  • 차주원;안수호;한정원;배형대;명호;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.105-108
    • /
    • 2006
  • It has been issued to fabricate nano-scale patterns with large-scale in the field of digital display. Also, large-scale fabrication technology of nano pattern is very important not only for the field of digital display but also for the most of applications of the nano-scale patterns in the view of the productivity. Among the fabrication technologies, UV nano imprinting process is suitable for replicating polymeric nano-scale patterns. However, in case of conventional UV nano imprinting process using flat mold, it is not easy to replicate large areal nano patterns. Because there are several problems such as releasing, uniformity of the replica, mold fabrication and so on. In this study, to overcome the limitation of the conventional UV nano imprinting process, we proposed a continuous UV nano imprinting process using a pattern roll stamper. A pattern roll stamper that has nano-scale patterns was fabricated by attaching thin metal stamper to a roll base. A continuous UV nano imprinting system was designed and constructed. As practical examples of the process, various nano patterns with pattern size of 500, 150 and 50nm were fabricated. Finally, geometrical properties of imprinted nano patterns were measured and analyzed.

  • PDF

집속이온빔을 이용한 나노 패턴 형성 (Fabrication of a Nano Pattern Using Focused Ion Beam)

  • 한진;민병권;이상조;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1531-1534
    • /
    • 2005
  • Nano pattern is being utilized to produce micro optical components, sensors, and information storage devices. In this study, a study on nano pattern fabrication using raster-scan type Focused Ion Beam (FIB) milling is introduced. Because the intensity of ion beam has Gaussian distribution, the overlapping of the Gaussian beam results in a 3D pattern, and the shape of the pattern can be adjusted by variation of FIB milling parameters, such as overlap, ion dose, and dwell time. The Gaussian shape of single beam intensity has been investigated by experiment, and 3D nano patterns with pitch of 200nm generated by FIB is demonstrated.

  • PDF

사출성형공정을 이용한 미세패턴을 갖는 플라스틱 부품 제작에 관한 연구 (A study on the Plastic Parts with Nano Pattern using Injection Molding Process)

  • 김동학;김태완
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.168-171
    • /
    • 2003
  • 본 연구에서는 일반사출과 MmSH방식 두 가지의 사출성형공정을 이용하여 나노패턴 구조물을 제작하였다. 성형품에 나타난 나노패턴의 전사성은 MmS방식을 이용한 PC 성형품에서 가장 우수했다. 일반사출공정에서 HIPS로 제작된 성형품은 나노패턴의 전사가 잘 형성되었고, PC의 경우 전사가 잘 이루어지지 않았다 연구 결과 수지의 유동성이 좋고, 금형표면 온도가 높을수록 나노패턴의 전사성은 향상됨을 알 수 있었다.

  • PDF

배분력의 정량적인 분석을 통한 단결정실리콘의 나노패턴 연성가공법 연구 (Study on Ductile Machining Technology for Manufacturing Nano-Patterns on Single Crystal Silicon through Quantitative Analysis of Thrust Force)

  • 최대희;전은채;윤민아;김광섭;제태진;정준호
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.11-16
    • /
    • 2016
  • Lithography techniques are generally used to manufacture nano-patterns on silicon, however, it is difficult to make a V-shaped pattern using these techniques. Although silicon is a brittle material, it can be treated as a ductile material if mechanically machined at extremely low force scale. The manufacturing technique of nano-patterns on single crystal silicon using a mechanical method was developed in this study. First, the linear pattern was machined on the silicon with increasing thrust force. Then, the correlation between measured cutting force and machined pattern was analyzed. Based on the analysis, the critical thrust force was quantitatively determined, and then the silicon was machined at a force lower than the critical thrust force. The machined pattern was observed using SEM and AFM to check for the occurrence of brittle fractures. Finally, the sharp V-shaped nano-pattern was manufactured on the single crystal silicon.

양극산화된 알루미늄과 마이크로 인덴데이션을 이용한 3차원 마이크로-나노 하이브리드 패턴 제작 (Development of 3D Micro-Nano Hybrid Patterns Using Anodized Aluminum and Micro-Indentation)

  • 권종태;신홍규;김병희;서영호
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1139-1143
    • /
    • 2007
  • A simple method for the fabrication of 3D micro-nano hybrid patterns was presented. In conventional fabrication methods of the micro-nano hybrid patterns, micro-patterns were firstly fabricated and then nano-patterns were formatted on the micro-patterns. Moreover, these micro-nano hybrid patterns could be fabricated on the flat substrate. In this paper, we suggested the fabrication method of 3D micro-nano hybrid patterns using micro-indentation on the anodized aluminum substrate. Since diameter of the hemispherical nano-pattern can be controlled by electrolyte and applied voltage in the anodizing process, we can easily fabricated nano-patterns of diameter of loom to 300nm. Nano-patterns were firstly formatted on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns of diameter of 150nm were fabricated by anodizing process, and then micro-pyramid patterns of the side-length of $50{\mu}m$ were formatted on the nano-patterns using micro-indentation. Finally we successfully replicated 3D micro-nano hybrid patterns by hot-embossing process. 3D micro-nano hybrid patterns can be applied to nano-photonic device and nano-biochip application.

AAO 나노기공을 형틀로 이용한 PMMA 나노패턴 형성 기술 (Synthesis of PMMA Plate with Nano-Sized Pattern on Anodized Aluminum Oxide Template)

  • 이병욱;이근우;이종하;이태성;홍진수;정재훈;김창교;이재홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.382-383
    • /
    • 2007
  • PMMA plate with nano-sized pattern was synthesized on anodized aluminum oxide template by bluk polymerization method. Anodized aluminum oxide was used as a template to synthesize the PMMA plate with nano-sized pattern. The polymerization of MMA was performed at $75-79^{\circ}C$. It is verified from SPM results that the nano-sized pattern on synthesized PMMA plate was well transferred from that of anodized aluminum oxide template.

  • PDF

나노 임프린트 리소그래피법에 의한 나노미터급 원기둥 패턴을 갖는 도광판의 제작 공정 개발 (Development of Fabrication Process of Light Guiding Plate with Nanometer-Sized-Cylindrical Pattern Using Nano Imprint Lithography Method)

  • 이병욱;홍진수;김창교
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.332-335
    • /
    • 2008
  • PMMA light guiding plate with nano pattern was fabricated by nano imprint lithography method. A silicon mold for electroplating of nickel was fabricated by conventional photolithography process. A nickel stamp for nano imprint lithography was fabricated by electroplating process using silicon mold. The nano imprint lithography was performed on PMMA plate at $140^{\circ}C$ under pressure of 20kN. The nano pattern on PMMA plate was investigated using FE-SEM. It is shown that the patterns were well transferred for several steps and the nano imprint lithography method could be applied for fabricating patterns of light guiding plate.

양극산화 알루미늄을 이용한 나노패턴 성형용 금형제작 (Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Template)

  • 오정길;김종선;강정진;김종덕;윤경환;황철진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.240-243
    • /
    • 2009
  • Recently, many researches on the development of super-hydrophobic and anti-reflective surfaces have been concentrated on the fabrication of nano-patterned products. The nano-patterned mold is a key to replicate nano-patterned products by mass production techniques such as injection molding and UV molding. The present paper proposes fabricating nano-patterned mold with cost-effective method. The nano-pattern molded was fabricated by electroforming the anodic aluminum oxide template without E-beam lithography. The final mold with nano-patterns showed the pores with the diameter of $100{\sim}120$ nm and the height of 150 nm was fabricated.

  • PDF

Transfer of patterns from thin film to patterning-resist substrate

  • 하늘빛;박지선;정솔;임혜인;김재성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.266-266
    • /
    • 2010
  • Ion beam sputtering(IBS)을 이용한 pattern 형성은 대상 물질의 제한이 적고 물리적 변수의 조절에 의해 쉽게 nano 구조의 형태와 크기를 조절할 수 있다는 점에서 관심을 받아오고 있다. 하지만 IBS를 이용한 pattern 형성이 어려운 물질들도 있어 다양한 기판에서의 nano pattern 형성에 관련된 많은 연구가 보고되고 있다. 본 연구발표에서는 유용한 반도체인 Si 표면에서의 IBS를 이용한 nano 구조 형성이 가능함과 그 과정에 대해 말하고자 한다. Ru을 100nm 두께로 증착시킨 Si(100)을 sputter 했을 때, Ru 표면에 잘 order된 nano pattern이 형성되었다. Sputter 시간이 증가하면서 pattern은 유지된 채 Ru이 깎여 나가다가 pattern의 가장 낮은 부분부터 Si기판이 드러나게 된다. 이 때 노출된 Si은 sputtering에 의해 깎여나가고 아직 Ru이 덮여있는 부분의 Si은 그대로 유지되어, Ru이 모두 sputter 되면서 보여지는 Si의 pattern은 Ru의 그것과 동일한 형태를 띄게 된다. 그 결과, Ru의 pattern이 Si으로 transfer되었음을 AFM과 SAM을 통해 확인할 수 있었다. 또한 IBS를 이용해 pattern 형성이 힘든 metallic glass에도 같은 방식으로 Ru을 쌓아 sputter 해봄으로써 pattern transfer를 확인해 볼 계획이다. 이러한 pattern transfer는 sputtering을 통한 pattern 형성이 어려웠던 다른 물질들에 그 가능성이 있음을 보여주고 있어 sputtering의 응용 폭이 넓어질 것을 기대한다.

  • PDF

FIB 신뢰성 평가를 위한 나노패턴의 설계 및 측정 (Design and Measurement of Nano-pattern for FIB Reliability Assessment)

  • 강현욱;이승재;조동우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 2005
  • Fm (Focused ion beam) system is one of the most important equipments for the nano-scale machining. Various researches have been performed, since it can etch the material and deposit 3-D structure with high-aspect-ratio in the nanometer scale. In spite of those researches, the definite method for the reliability of FIB system has not been reported. In this paper, we proposed the reliability assessment method through nano-pattern fabrication. In the fabricated nano-pattern, the characteristics of FIB system are included. Using this effect, we tried to assess the FIB reliability. First, we suggested reliability assessment items and nano-patterns. And, to know the suitableness of the proposed method, we fabricated several nano-patterns using Nova200(FEI Company) and SMI2050(SEIKO) which are FIB apparatuses. The fabricated nano-patterns are measured with SEM (Scanning Electron Microscope) and compared with designed dimensions. And the compared results showed that the proposed method is suitable for the assessment of FIB system reliability.

  • PDF