• Title/Summary/Keyword: Nano layer

Search Result 1,308, Processing Time 0.041 seconds

Characterization of Photoelectron Behavior of Working Electrodes with the Titanium Dioxide Window Layer in Dye-sensitized Solar Cells

  • Gong, Jaeseok;Choi, Yoonsoo;Lim, Yeongjin;Choi, Hyonkwang;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.1-346.1
    • /
    • 2014
  • Porous nano crystalline $TiO_2$ is currently used as a working electrode in a dye-sensitized solar cell (DSSC). The conventional working electrode is comprised of absorption layer (particle size:~20 nm) and scattering layer (particle size:~300 nm). We inserted window layer with 10 nm particle size in order to increase transmittance and specific surface area of $TiO_2$. The electrochemical impedance spectroscope analysis was conducted to analysis characterization of the electronic behavior. The Bode phase plot and Nyquist plot were interpreted to confirm the internal resistance caused by the insertion of window layer and carrier lifetime. The photocurrent that occurred in working electrode, which is caused by rise in specific surface area, increased. Accordingly, it was found that insertion of window layer in the working electrode lead to not only effectively transmitting the light, but also increasing of specific surface area. Therefore, it was concluded that insertion of window layer contributes to high conversion efficiency of DSSCs.

  • PDF

Fabrications of nano-sized patterns using bi-layer UV Nano imprint Lithography (UV NIL을 이용한 Lift-off가 용이한 패턴 형성 연구)

  • Yang K.Y.;Hong S.H.;Lee H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1489-1492
    • /
    • 2005
  • Compared to other nano-patterning techniques, Nano imprint Lithography (NIL) has some advantages of high throughput and low process cost. To imprint low temperature and pressure, UV Nano imprint Lithography, which using the monomer based UV curable resin is suggested. Because fabrication of high fidelity pattern on topographical substrate is difficult, bi-layer Nano imprint lithography, which are consist of easily removable under-layer and imprinted pattern, is being used. If residual layer is not remained after imprinting, and under-layer is removed by oxygen RIE etching, we might be able to fabricate the bi-layer pattern for easy lift-off process.

  • PDF

Study on Properties of Self-Assembled Monolayer as Anti-adhesion Layer on Metallic Nano Stamper (금속 나노 스탬퍼 점착방지막으로서의 자기조립 단분자막 특성 연구)

  • 최성우;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.367-370
    • /
    • 2003
  • In this study, application of SAM (self-assembled monolayer) to nano replication process as an anti-adhesion layer was presented to reduce the surface energy between the nano mold and the replicated polymeric nano patterns. The electron beam lithography was used for master nano patterns and the electorforming process was used to fabricate the nickel nano stamper. Alkanethiol SAM as an anti-adhesion layer was deposited on metallic nano stamper using solution deposition method. To analyze wettability and adhesion force of SAM, contact angle and LFM (Lateral Force Microscopy) were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. It was found that the surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

Analysis of the Abnormal Voltage-Current Behaviors on Localized Carriers of InGaN/GaN Multiple Quantum well from Electron Blocking Layer

  • Nam, Giwoong;Kim, Byunggu;Park, Youngbin;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.219-219
    • /
    • 2013
  • The effect of an electron blocking layer (EBL) on V-I curves in GaN/InGaN multiple quantum well is investigated. For the first time, we found that curves were intersected at 3.012 V and analyzed the reason for intersection. The forward voltage in LEDs with an p-AlGaN EBL is larger than without p-AlGaN EBL at low injection current because the Mg doping efficiency for p-GaN layer was higher than that of p-AlGaN layer. However, the forward voltage in LEDs with an p-AlGaN EBL is smaller than without p-AlGaN EBL at high injection current because the carriers overflow from the active layer when injection current increases in LEDs without p-AlGaN EBL and in case of LED with p-AlGaN EBL, the carriers are blocked by EBL.

  • PDF

Influence of Growth Temperature for Active Layer and Buffer Layer Thickness on ZnO Nanocrystalline Thin Films Synthesized Via PA-MBE

  • Park, Hyunggil;Kim, Younggyu;Ji, Iksoo;Kim, Soaram;Lee, Sang-Heon;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.203.1-203.1
    • /
    • 2013
  • Zinc oxide (ZnO) nanocrystalline thin films on various growth temperatures for active layer and different buffer layer thickness were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si substrates. The ZnO active layer were grown with various growth temperature from 500 to $800^{\circ}C$ and the ZnO buffer layer were grown for different time from 5 to 40 minutes. To investigate the structural and optical properties of the ZnO thin films, scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescence (PL) spectroscopy were used, respectively. In the SEM images, the ZnO thin films have high densification of grains and good roughness and uniformity at $800^{\circ}C$ for active layer growth temperature and 20 minutes for buffer layer growth time, respectively. The PL spectra of ZnO buffer layers and active layers display sharp near band edge (NBE) emissions in UV range and broad deep level emissions (DLE) in visible range. The intensity of NBE peaks for the ZnO thin films significantly increase with increase in the active layer growth temperature. In addition, the NBE peak at 20 minutes for buffer layer growth time has the largest emission intensity and the intensity of DLE peaks decrease with increase in the growth time.

  • PDF

The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer (Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용)

  • Kim, Hae-Won;Kim, Dong-Ju;Park, Seok-Joo;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Ryul;Yoon, Soon-Gil;Song, Rak-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

An Reliable Non-Volatile Memory using Alloy Nano-Dots Layer with Extremely High Density

  • Lee, Gae-Hun;Kil, Gyu-Hyun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.241-241
    • /
    • 2010
  • New non-volatile memory with high density and high work-function metal nano-dots, MND (Metal Nano-Dot) memory, was proposed and fundamental characteristics of MND capacitor were evaluated. In this work, nano-dot layer of FePt with high density and high work-function (~5.2eV) was fabricated as a charge storage site in non-volatile memory, and its electrical characteristics were evaluated for the possibility of non-volatile memory in view of cell operation by Fowler-Nordheim (FN)-tunneling. Here, nano-dot FePt layer was controlled as a uniform single layer with dot size of under ~ 2nm and dot density of ${\sim}\;1.2{\times}10^{13}/cm^2$. Electrical measurements of MOS structure with FePt nano-dot layer shows threshold voltage window of ~ 6V using FN programming and erasing, which is satisfied with operation of the non-volatile memory. Furthermore, this structure provides better data retention characteristics compared to other metal dot materials with the similar dot density in our experiments. From these results, it is expected that this non-volatile memory using FePt nano-dot layer with high dot density and high work-function can be one of candidate structures for the future non-volatile memory.

  • PDF

Thin Film Encapsulation with Organic-Inorganic Nano Laminate using Molecular Layer Deposition and Atomic Layer Deposition

  • Yun, Gwan-Hyeok;Jo, Bo-Ram;Bang, Ji-Hong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.270-270
    • /
    • 2016
  • We fabricated an organic-inorganic nano laminated encapsulation layer using molecular layer deposition (MLD) combined with atomic layer deposition (ALD). The $Al_2O_3$ inorganic layers as an effective single encapsulation layer were deposited at 80 degree C using ALD with alternating surface-saturation reactions of TMA and $H_2O$. A self-assembled organic layers (SAOLs) were fabricated at the same temperature using MLD. MLD and ALD deposition process were performed in the same reaction chamber. The prepared SAOL-$Al_2O_3$ organic-inorganic nano laminate films exhibited good mechanical stability and excellent encapsulation property. The measurement of water vapor transmission rate (WVTR) was performed with Ca test. We controlled thickness-ratio of organic and inorganic layer, and specific ratio showed a lowest WVTR value. Also this encapsulation layer contained very few pin-holes or defects which were linked in whole area by defect test. To apply into real OLEDs panels, we controlled a film stress from tensile to compressive and flexibility defined as an elastic modulus with organic-inorganic ratio. It has shown that OLEDs panel encapsulated with nano laminate layer exhibits better properties than single layer encapsulated in acceleration conditions. These results indicate that the organic-inorganic nano laminate thin films have high potential for flexible display applications.

  • PDF

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.