• 제목/요약/키워드: Nano alumina surface modification

검색결과 3건 처리시간 0.018초

에폭시 알루미나 멀티-콤포지트의 기계적 특성연구 (Mechanical Properties of Epoxy Alumina Multi-Composites)

  • 박재준
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.796-802
    • /
    • 2016
  • In order to develop an electrical insulation material for gas GIS (insulation switch gear) spacer, 4 types of epoxy/micro-alumina (40, 50, 60, 70 wt%) composites and 9 types of epoxy/nano-alumina (1, 3, 5 g)/micro-alumina (40, 50, 60, 70 wt%) composites were prepared and tensile test was carried out. In here, nano-alumina was previously surface-treated with GDE (glycerol diglycidyl ether). As micro-alumina and GDE-treated nano-alumina contents increased, tensile strength increased and the highest value was shown in the system with 3 g GDE-treated nano-alumina.

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권1호
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.

나노분말이 첨가된 변압기 절연유 제조 및 정적열전특성 평가 (Synthesis and Characterization of Transformer Oil containing Nanoparticles)

  • 송현우;최철;최경식;오제명
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.49-52
    • /
    • 2004
  • New hydrophobic alumina nanoparticles were synthesized from alumina powders which were hydrophilic nano-agglomerates with diameters from ${\mu}m$ to mm by surface modification. The synthesized hydrophobic alumina nanoparticles which were retreated with Oleic acid were analyzed by Fourier transform infrared spectrophotometer and transmission electron microscopy. Then transformer oil containing surface-modified alumina naonparticles were synthesized. The synthesized hydrophobic alumina nanoparticles were well-dispersed in transformer oil. The coefficient of viscosity and dielectric strength of the Nano-transformer oil were investigated with viscometer and high voltage experiment device. In this study, the thermal conductivity of Nano-transformer oil was investigated to reduce the oil temperature of transformer by transient hot-wire method.

  • PDF