• Title/Summary/Keyword: Nano Oxide

Search Result 1,163, Processing Time 0.027 seconds

Nitric Oxide Delivery using Nanostructures and Its Biomedical Applications (나노 구조체를 이용한 산화질소 전달체에 대한 연구 및 바이오메디컬 응용)

  • Choi, Yunseo;Jeong, Hyejoong;Park, Kyungtae;Hong, Jinkee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • The discovery of nitric oxide (NO) as a major signaling molecule in a number of pathophysiological processes - vasodilation, immune response, platelet aggregation, wound repair, and cancer biology - has led to the development of various exogeneous NO delivery systems. However, the development of ideal delivery system for human body application is still left as a challenge due to its high reactivity and short half-life in physiological condition. In this article, an overview of several nano-structures as potential NO delivery system will be presented, along with their recent research results and biomedical applications. Nano-size delivery system has immense advantages compared to others due to its high surface-to-volume ratio and capability for surface modification; thus, it has been proven to be effective in delivering nitric oxide with enhanced performance. Through this novel nano-structure delivery system, we are expecting to achieve sustained release of nitric oxide within adequate range of concentration, which ensures desired drug effects at the target site. Among different nano-structures, in particular, nanoparticle, microemulsion and nanofilm will be reviewed and compared to each other in respect of nitric oxide release profile. The proposed nano-structures for exogeneous NO delivery have a biological significance in that it can be further utilized in diverse biomedical fields as a highly promising therapeutic method.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Characteristics of Indium Zinc Tin Oxide films grown by RF magnetron sputtering for organic light emitting diodes (RF magnetron sputtering system으로 성장시킨 OLED용 IZTO 박막의 특성연구)

  • Park, Ho-Kyun;Jeong, Soon-Wook;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.412-413
    • /
    • 2007
  • We report on the electrical, optical, and structural properties of indium zinc tin oxide (IZTO) anode films grown at room temperature on glass substrate. The IZTO anode films grown by a RF magnetron sputtering were investigated as functions of RF power, working pressure, and process time in pure Ar ambient. To investigate electrical, optical and structural properties of IZTO anode films, 4-point probe, Hall measurement, UV/Vis spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM), and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $13.88\;{\Omega}/{\square}$, average transmittance above 80 % in visible range were obtained from optimized IZTO anode films grown on glass substrate. These results shown the amorphous structure regardless of RF power and working pressure due to low substrate temperature.

  • PDF

Effect of 2nd Anodization on the Pore Formation for Alumina Nano Templates (알루미나 나노템플레이트의 기공형성에 미치는 2차 양극산화의 영향)

  • Cho, S.H.;Oh, H.J.;Joo, E.K.;Yoo, C.W.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.533-539
    • /
    • 2002
  • Porous anodic aluminum oxide layer for nano templates was prepared in acidic solutions. In order to investigate effects of 2nd anodization on ordered formation behaviors of the porous oxide layers, electrochemical and microstructural studies were performed, primarily using TEM, FE- SEM, AFM, and Ultramicrotomy. The pore diameter of the anodic oxide layer increased approximately linearly with increasing voltages, and to the contrary, the pore density decreased. It was shown that 2nd anodizing on the cell base after dissolving 1st anodic oxide layer was remarkably effective for forming ordered array of the pores, comparing with the case for 1st anodization only. And for controlling the diameter of pores, widening method by chemical dissolution seemed more practical than by electrochemical methods.

Influence of the Precipitation Medium and Ultrasonic Wave on the Synthesis of Iron Oxide (산화철 합성에 미치는 침전제와 초음파의 영향)

  • Lim, Jong-Ho;Kim, Tae-Hyun;Lee, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.687-691
    • /
    • 2006
  • Synthesis of Iron oxides by air oxidation of $FeSO_4$ solutions in the presence of NaOH, Diethylenetriamine (DETA), Butylamine (BA) and influence of ultrasonic wave were investigated by XRD, SEM and particle size analyzer. As the DETA addition increased to 0.05 mol, $Fe_3O_4$ was formed with goethite($\alpha$- FeOOH) and $Fe_3O_4$ single phase was formed above 0.18mol of DETA. As the BA addition increased, the XRD peak intensity of (020) face of lepidocrocite($\gamma$-FeOOH) was developed until the formation of $Fe_3O_4$ and reduced the size of the iron oxide particles formed. Ultrasonic wave reduced the size of the iron oxide particles but gave little effects on the iron oxide particles synthesized by amine.

Titanium Dioxide Nanoparticles filled Sulfonated Poly(ether ether ketone) Proton Conducting Nanocomposites Membranes for Fuel Cell

  • Kalappa, Prashantha;Hong, Chang-Eui;Kim, Sung-Kwan;Lee, Joong-Hee
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.87-90
    • /
    • 2005
  • This paper presents an evaluation of the effect of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree of 57%. A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with standard nafion membrane.

  • PDF

An Environmentally-friendly Precursor, Ferrous Acetate, in preparation for Monodisperse Iron Oxide Nanoparticles

  • Suh, Yong-Jae;Kil, Dae-Sup;Chung, Kang-Sup;Lee, Hyo-Sook;Shao, Huiping
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.106-109
    • /
    • 2008
  • Almost monodisperse iron oxide nanoparticles with an average particle size ranging from 5 to 43 nm were fabricated using an environmentally friendly starting material, ferrous acetate. The smallest particles were formed in the presence of a reductant, 1,2-dodecanediol, while the particle size increased with increasing concentration of dispersing agents. The dispersants consisted of various combinations of oleic acid, oleylamine, trioctylphosphine, and polyvinylpyrrolidone. The threshold temperature to form crystalline particles was found to be $240^{\circ}C$. The 43 nm nanoparticles exhibited a room temperature saturation magnetization and coercivity of 57 emu/g and 47 Oe, respectively.

The Multi-Frequency NMR Relaxation and EPR Study of Nano-sized Iron Oxide

  • 황문정;이영주;이일수;장용민
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.129-129
    • /
    • 2002
  • 목적: 초상자성 nano 산화철 입자의 특성을 연구하기 위하여, 여러 다른 자기장 세기에서의 NMR 자기공이완시간(T1/T2)을 측정하고, 초상자성 nano-particle 조영제의 기전에 관한 모델로부터 얻어 진 계산식과 비교해보며, 다양한 온도에서의 EPR spectrum을 이용하여 이들의 전자적 성질을 비교해 보고자 하였다.

  • PDF

Mechanism Study of Flowable Oxide Process for Sur-100nm Shallow Trench Isolation

  • Kim, Dae-Kyoung;Jang, Hae-Gyu;Lee, Hun;In, Ki-Chul;Choi, Doo-Hwan;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.68-68
    • /
    • 2011
  • As feature size is smaller, new technology are needed in semiconductor factory such as gap-fill technology for sub 100nm, development of ALD equipment for Cu barrier/seed, oxide trench etcher technology for 25 nm and beyond, development of high throughput Cu CMP equipment for 30nm and development of poly etcher for 25 nm and so on. We are focus on gap-fill technology for sub-30nm. There are many problems, which are leaning, over-hang, void, micro-pore, delaminate, thickness limitation, squeeze-in, squeeze-out and thinning phenomenon in sub-30 nm gap fill. New gap-fill processes, which are viscous oxide-SOD (spin on dielectric), O3-TEOS, NF3 Based HDP and Flowable oxide have been attempting to overcome these problems. Some groups investigated SOD process. Because gap-fill performance of SOD is best and process parameter is simple. Nevertheless these advantages, SOD processes have some problems. First, material cost is high. Second, density of SOD is too low. Therefore annealing and curing process certainly necessary to get hard density film. On the other hand, film density by Flowable oxide process is higher than film density by SOD process. Therefore, we are focus on Flowable oxide. In this work, dielectric film were deposited by PECVD with TSA(Trisilylamine - N(SiH3)3) and NH3. To get flow-ability, the effect of plasma treatment was investigated as function of O2 plasma power. QMS (quadruple mass spectrometry) and FTIR was used to analysis mechanism. Gap-filling performance and flow ability was confirmed by various patterns.

  • PDF