• 제목/요약/키워드: Nano Ni-ferrite

검색결과 35건 처리시간 0.031초

칩인덕터용 저온소성 Nano-glass 연구 (Low Firing Temperature Nano-glass for Multilayer Chip Inductors)

  • 안성용;위성권
    • 한국자기학회지
    • /
    • 제18권1호
    • /
    • pp.43-47
    • /
    • 2008
  • [ $ZnO-Bi_2O_3-Al_2O_3-B_2O_3-SiO_2$ ] nano-glass를 sol-gel 법으로 제조 하였다. 평균 입자 크기는 60.3 nm였으며 매우 균일한 입도 분포를 가졌다. Nano-glass를 NiZnCu ferrite의 저온소성용 소결조제로 사용하였으며 NiZnCu ferrite에 nano-glass를 첨가한 후 $840{\sim}900^{\circ}C$에서 2시간 소결을 진행하였다. 소결성 및 자기적 특성에 대해 연구하였으며 밀도, 수축율, 초투자율, 품질계수, 및 포 화자화값을 측정하였다. nano-glass를 0.5 wt% 첨가하여 $900^{\circ}C$에서 소결한 토로이달 core 시편의 초투자율은 1 MHz에서 측정 시 193.3의 값을 가졌다. 초투자율과 포화자화값은 소결온도가 증가함에 따라 증가하는 경향을 나타내었다. sol-gel 법에 의해 제조된 $ZnO-Bi_2O_3-Al_2O_3-B_2O_3-SiO_2$ nano-glass를 칩인덕터용 NiZnCu ferrite의 저온 소결조제로 사용 가능함을 알 수 있었다.

자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성 (Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors)

  • 오영우;안종견
    • 마이크로전자및패키징학회지
    • /
    • 제22권3호
    • /
    • pp.45-50
    • /
    • 2015
  • Glycine-nitrate와 citric acid를 이용하여 단상의 Ni-Zn ferrite, Ba-ferrite 나노입자와 두 나노복합체 ferrite의 전구체를 제조하고 이를 열처리하여 XRD 및 FT-IR로 각각의 상 분석을, SEM으로 분말의 형상과 크기를, VSM으로 자기적 특성과 합성된 나노복합체 ferrite에서의 exchange-coupling 상호작용을 확인하였다. XRD 분석 결과, 자전 연소법으로 얻은 전구체로 단상의 Ni-Zn ferrite와 Ba-ferrite 나노 입자 및 $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ 나노복합체 페라이트가 합성되었으며, 나노복합체에는 $BaFe_{12}O_{19}$$Ni_{0.5}Zn_{0.5}Fe_2O_4$가 잘 분포되어 있어 경자성과 연자성이 공존하고 있음을 확인하였고, 나노복합체 페라이트의 히스테리시스 곡선의 형상을 통해 경자성과 연자성 사이에 exchange-copuling이 잘 이루어졌음을 확인할 수 있었다. VSM으로 측정한 나노복합체의 경우. GNP로 제조한 precursor를 $900^{\circ}C$에서 하소한 $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ 나노복합체는 포화자화 81.69 emu/g, 잔류자화 38 emu/g, 보자력 2598.48G를 나타내었다. $Ni_{0.5}Zn_{0.5}Fe_2O_4/BaFe_{12}O_{19}$ 복합체에서 $BaFe_{12}O_{19}$의 무게비가 증가 할수록 보자력은 증가하였고, 포화자화값과 잔류자화 값은 감소하였다.

새도우마스크 제조공정 중 발생되는 폐액으로부터 니켈 페라이트 나노 분말 제조 (Fabrication of Nano-Sized Ni-ferrite Powder from Waste Solution Produced by Shadow Mask Processing)

  • 유재근;서상기
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.262-269
    • /
    • 2003
  • Nano-sized Ni-ferrite powder was fabricated by spray pyrolysis process using the waste solution resulting from shadow mask processing. The average particle size of the powder was below 100 nm. The effects of the concentration of raw material solution, the nozzle tip size and air pressure on the properties of powder were studied. As the concentration increased, the average particle size of the powder gradually increased and its specific surface area decreased, but size distribution was much wider and the fraction of the Ni-ferrite phase greatly increased as the concentration increasing. As the nozzle tip size increased from 1 mm to 2 mm, the average particle size of the powder decreased. In case of 3 mm nozzle tip size, the average particle size of the powder increased slightly. On the other hand, in case of 5 mm nozzle tip size, average particle size of the powder decreased. Size distribution of the powder was unhomogeneous, and the fraction of the Ni-ferrite phase decreased as the nozzle tip size increasing. As air pressure increased up to 1 kg/$cm^2$, the average particle size of the powder decreased slightly, on the other hand, the fraction of the Ni-ferrite phase was almost constant. In case of 3kg/$cm^2$ air pressure, average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased, but size distribution was narrow.

Fe계 나노결정립 분말과 페라이트 복합체의 전자파 흡수특성 (Electromagnetic Wave Absorption Behavior of a Fe-based Nanocrystalline Alloy mixed with a Ferrite Powder)

  • 구숙경;이민혁;문병기;송용설;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.292-296
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties of the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.

분무열분해공정에 의한 니켈 페라이트 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Ni-ferrite Powder by Spray Pyrolysis Process)

  • 유재근;서상기;박시현;한정수
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.202-209
    • /
    • 2004
  • In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80$0^{\circ}C$ to 110$0^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 $kg/cm^2, the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 $kg/cm^2 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Crystallographic and Magnetic Properties of Nano-sized Nickel Substituted Cobalt Ferrites Synthesized by the Sol-gel Method

  • Choi, Won-Ok;Lee, Jae-Gwang;Kang, Byung-Sub;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.59-63
    • /
    • 2014
  • Nano-sized nickel substituted cobalt ferrite powders, $Ni_xCo_{1-x}Fe_2O_4$ ($0.0{\leq}x{\leq}1.0$), were fabricated by the sol-gel method, and their crystallographic and magnetic properties were studied. All the ferrite powders showed a single spinel structure, and behaved ferrimagnetically. When the nickel substitution was increased, the lattice constants and the sizes of particles of the ferrite powders decreased. The M$\ddot{o}$ssbauer absorption spectra of $Ni_xCo_{1-x}Fe_2O_4$ ferrite powders could be fitted with two six-line subspectra, which were assigned to a tetrahedral A-site and octahedral B-sites of a typical spinel crystal structure. The increase in values of the magnetic hyperfine fields indicated that the superexchange interaction was stronger, with the increased nickel concentration in $Ni_xCo_{1-x}Fe_2O_4$. This could be explained using the cation distribution, which can be written as, $(Co_{0.28-0.28x}Fe_{0.72+0.28x})[Ni_xCo_{0.72-0.72x}Fe_{1.28-0.28x}]O_4$. The two values of the saturation magnetization and the coercivity decreased, as the rate of nickel substitution was increased. These decreases could be explained using the cation distribution, the magnetic moment, and the magneto crystalline anisotropy constant of the substituted ions.