Browse > Article
http://dx.doi.org/10.4283/JMAG.2014.19.1.059

Crystallographic and Magnetic Properties of Nano-sized Nickel Substituted Cobalt Ferrites Synthesized by the Sol-gel Method  

Choi, Won-Ok (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University)
Lee, Jae-Gwang (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University)
Kang, Byung-Sub (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University)
Chae, Kwang Pyo (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University)
Publication Information
Abstract
Nano-sized nickel substituted cobalt ferrite powders, $Ni_xCo_{1-x}Fe_2O_4$ ($0.0{\leq}x{\leq}1.0$), were fabricated by the sol-gel method, and their crystallographic and magnetic properties were studied. All the ferrite powders showed a single spinel structure, and behaved ferrimagnetically. When the nickel substitution was increased, the lattice constants and the sizes of particles of the ferrite powders decreased. The M$\ddot{o}$ssbauer absorption spectra of $Ni_xCo_{1-x}Fe_2O_4$ ferrite powders could be fitted with two six-line subspectra, which were assigned to a tetrahedral A-site and octahedral B-sites of a typical spinel crystal structure. The increase in values of the magnetic hyperfine fields indicated that the superexchange interaction was stronger, with the increased nickel concentration in $Ni_xCo_{1-x}Fe_2O_4$. This could be explained using the cation distribution, which can be written as, $(Co_{0.28-0.28x}Fe_{0.72+0.28x})[Ni_xCo_{0.72-0.72x}Fe_{1.28-0.28x}]O_4$. The two values of the saturation magnetization and the coercivity decreased, as the rate of nickel substitution was increased. These decreases could be explained using the cation distribution, the magnetic moment, and the magneto crystalline anisotropy constant of the substituted ions.
Keywords
nickel cobalt ferrite; sol-gel method; M$\ddot{o}$ssbauer spectroscopy; cation distribution; saturation magnetization; coercivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Caltun, H. Chiriac, N. Lupu, I. Dumitru, and B. A. Rao, J. Optoelectro. Adv. Mater. 9, 1158 (2007).
2 N. N. Greenwood and T. C. Gibb, Mossbauer Spectroscopy, Chapman and Hall Ltd. London (1971), p. 261.
3 A. S. Albaguergye, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000).   DOI   ScienceOn
4 A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990), p. 217.
5 M. Mozaffari, J. Amighian, and E. Darsheshdar, J. Magn. Magn. Mater. 350, 19 (2014).   DOI   ScienceOn
6 A. Ghasemi, A. P. Jr., and C. F. C. Machado, J. Magn. Magn. Mater. 324, 2193 (2012).   DOI   ScienceOn
7 V. L. Mathe and A. D. Sheikh, Physica B 405, 3594 (2010).   DOI   ScienceOn
8 J. G. Lee, J. Y. Park, and C. S. Kim, J. Mater. Sci. 53, 3965 (1998).
9 V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson, and C. E. Johson, J. Magn. Magn. Mater. 125, 199 (1993).   DOI   ScienceOn
10 B. D. Cullity, Elements of X-Ray Diffraction, Addition Wesley Co. (1978), p. 102.
11 R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967).   DOI
12 C. V.-Aarca, P. Lavela, and J. L. Tirado, J. Power Sources 196, 6978 (2011).   DOI   ScienceOn
13 P. Didukh, J. M. Grenecheb, A.-S. Waniewska, P. C. Fannin, and L. Casas, J. Magn. Magn. Mater. 613, 242 (2002).
14 M. Z. Schmalzrifd. J. Phys. Chem. 28, 203 (1961).
15 W. O. Choi, Master thesis, Graduate School of Konkuk Univ. (2014).
16 V. Blasko, V. Petkov, V. Rusanov, Ll. M. Martinez, B. Martinez, J. S. Munoz, and M. Mikhove, J. Magn. Magn. Mater. 162, 331 (1996).   DOI   ScienceOn
17 K. Oda, T. Yoshio, K. Hirata, K. O. Oka, and K. Takabashi, J. Jpn. Soc. Powder Powder Metal. 29, 170 (1982).   DOI