• Title/Summary/Keyword: Nano Carbon black

Search Result 99, Processing Time 0.028 seconds

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Influence of Carbon Black as a Conductor on Electrode Characteristics for Lithium Secondary Battery

  • Yoon, Se-Rah;Lee, Joong-Kee;Ju, Jae-Beck;Cho, Byung-Won;Park, Dal-Keun
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • The electrochemical behavior of the $LiCoO_2$ electrode, containing carbon black as a conductor, depends upon the nature and characteristics of carbon black. In this study, six different kinds of carbon blacks were employed to investigate the relationship between the properties of carbon blacks and electrochemical characteristics of the electrode. The larger amount of surface oxygen functional groups brought the lower electrical conductivity for the carbon blacks. The electrical conductivity of carbon blacks was closely related to the impurities such as ash and volatile content. The rate capability and cyclability of the electrode were improved with the higher conductivity of carbon blacks used. So, it can be concluded that high conductive carbon black plays an important role as a conductor for high rate of charge-discharge capability and initial efficiency.

  • PDF

Effects of Nano-sized Carbon Black on the Lungs of High Fat-diet Induced Overweight Rats

  • Lim, Cheol-Hong;Kang, Mingu;Han, Jeong-Hee;Yun, Hyo-In
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.14.1-14.9
    • /
    • 2013
  • Objectives This study was conducted to determine whether nano-sized carbon black exposure results in greater damage in high fat diet-induced overweight rats than normal weight ones and to identify the possible causes of any differences. Methods Two groups of Sprague-Dawley rats allocated by body weight (normal and overweight) were exposed to aerosolized nano-sized carbon black for 6 hours a day, 5 days per week over a 4-week period. Differential cell counts, lactate dehydrogenase (LDH) activities and albumin concentrations were measured in bronchoalveolar lavage (BAL) fluid, and histopathological findings in the lungs were evaluated. Tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin (IL)-6 were measured in BAL fluid and supernatants of lipopolysaccharide(LPS)-stimulated lymphocyte culture. Results Rats exposed to high concentrations of nano-sized carbon black showed significantly increased (p <0.05) polymorphonuclear leukocyte number and LDH activity in the BAL fluid from both overweight and normal rats. Mild histopathological changes were observed in normal rats irrespective of carbon black concentrations. However, severe histological scores were found in overweight rats ($1.75{\pm}0.46$, $2.25{\pm}0.46$, and $2.88{\pm}0.35$ after low, medium, and high concentration exposures). Proinflammatory cytokine levels of TNF-${\alpha}$ and IL-6 were significantly higher in the supernatant of LPS-stimulated lymphocytes of overweight rats, whereas there was no significant difference in the BAL fluid between normal and overweight rats. Conclusions Inflammation and damage to lungs exposed to nano-sized carbon black was more severe in high fat diet-induced overweight rats compared to normal rats.

Manufacture of Conductive Complex Board Using Nano-Carbon Black and Paper Sludge (나노카본블랙과 제지 슬러지를 이용한 전도성 복합보드의 제조에 대한 연구)

  • Kim, Yong-Ryul;Son, Min-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.363-369
    • /
    • 2008
  • In the present work, the choice of the nano carbon black and optimum mixed ratio and effectiveness of the mixed carbon black to get a raw data for a manufacturing method of conductive complex board. Optimum mixed ratio of paper sludge & water was 1 : 2.5 for reformations. HB-41-Y was cheaper than Super-P with the single carbon black. Also electric conductivity of HB-41-Y($6.406{\times}10^{-2}\;{\Omega}cm^{-1}$) was about 6.5 times higher than Super-P($9.741{\times}10^{-3}\;{\Omega}cm^{-1}$) at 20 wt% carbon black. This time optimum mixture ratio of the paper sludge and the carbon black to be about 15 wt%, optimum mixed ratio HB-41Y and Graphite about 3:1 and its electric conductivity was $5.824{\times}10^{-2}\;{\Omega}cm^{-1}$.

Comparison of Toxicity and Deposition of Nano-Sized Carbon Black Aerosol Prepared With or Without Dispersing Sonication

  • Kang, Mingu;Lim, Cheol-Hong;Han, Jeong-Hee
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • Nanotoxicological research has shown toxicity of nanomaterials to be inversely related to particle size. However, the contribution of agglomeration to the toxicity of nanomaterials has not been sufficiently studied, although it is known that agglomeration is associated with increased nanomaterial size. In this study, we prepared aerosols of nano-sized carbon black by 2 different ways to verify the effects of agglomeration on the toxicity and deposition of nano-sized carbon black. The 2 methods of preparation included the carbon black dispersion method that facilitated clustering without sonication and the carbon black dispersion method involving sonication to achieve scattering and deagglomeration. Male Sprague-Dawley rats were exposed to carbon black aerosols 6 hr a day for 3 days or for 2 weeks. The median mass aerodynamic diameter of carbon black aerosols averaged $2.08{\mu}m$ (for aerosol prepared without sonication; group N) and $1.79{\mu}m$ (for aerosol prepared without sonication; group S). The average concentration of carbon black during the exposure period for group N and group S was $13.08{\pm}3.18mg/m^3$ and $13.67{\pm}3.54mg/m^3$, respectively, in the 3-day experiment. The average concentration during the 2-week experiment was $9.83{\pm}3.42mg/m^3$ and $9.08{\pm}4.49mg/m^3$ for group N and group S, respectively. The amount of carbon black deposition in the lungs was significantly higher in group S than in group N in both 3-day and 2-week experiments. The number of total cells, macrophages and polymorphonuclear leukocytes in the bronchoalveolar lavage (BAL) fluid, and the number of total white blood cells and neutrophils in the blood in the 2-week experiment were significantly higher in group S than in normal control. However, differences were not found in the inflammatory cytokine levels (IL-$1{\beta}$, TNF-${\alpha}$, IL-6, etc.) and protein indicators of cell damage (albumin and lactate dehydrogenase) in the BAL fluid of both group N and group S as compared to the normal control. In conclusion, carbon black aerosol generated by sonication possesses smaller nanoparticles that are deposited to a greater extent in the lungs than is aerosol formulated without sonication. Additionally, rats were narrowly more affected when exposed to carbon black aerosol generated by sonication as compared to that produced without sonication.

Properties of Carbon Black/SBR Rubber Composites Filled by Surface Modified Carbon Blacks

  • Dai, Shuang-Ye;Ao, Ge-You;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • Properties of carbon blacks and carbon black/SBR rubber composites filled by surface modified carbon blacks were examined. Although the specific surface area of carbon blacks increased after the surface modifications with heat, acid, and base, there were no obvious changes in resistivity. The composites filled by heat treated carbon blacks showed a higher tensile strength and elongation than those filled by raw blacks. The acid and base treated carbon blacks filled composites also showed higher tensile strength but similar elongation values with those filled by raw blacks. With increasing loading ratio, both tensile strength and elongation increased, and appeared a maximum value at 30-40 phr. Modulus at 300% strain remained increasing with further loading of carbon blacks. At the same loading, the heat treated black filled composites showed similar modulus values with composites filled by raw blacks but for base and acid treated black filled composites much higher values were obtained. After the surface modification, the functional groups which played an important role in reinforcement action were changed.

Dielectric Characteristics of the Polymers Containing Nano-size Conductive Carbon Black Powders (전도성 나노 카본 블랙을 함유한 고분자 재료의 유전특성)

  • 진우석;이대길
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.68-77
    • /
    • 2004
  • The electromagnetic (EM) absorption or shielding characteristics of a material is an important issue not only for military purpose but also for commercial purposes such as radar, electric or telecommunication devices. In order to design the effective electromagnetic wave absorber, the electromagnetic characteristics of the constituents of the material should be available in target frequency band. Also, it must be possible to predict the electromagnetic properties of absorbers with respect to the content of lossy ingredients. In this study, the dielectric properties of unsaturated polyester resins containing nano-size conductive carbon black powder were measured with a free space method in the X-band frequency range and analyzed with respect to the content of carbon black. Finally, the method for estimating the dielectric properties of polymeric resin containing conductive carbon black with respect to the EM frequency was developed and verified.

Platinum and carbon nano tube addition in carbon black counter electrode for dye-sensitized solar cells

  • Lee, Su Young;Kim, Sang Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.229-230
    • /
    • 2012
  • Platinum (Pt) has been commonly used as a counter electrode material in dye-sensitized solar cells, because it has high catalytic activity and electric conductivity as well as chemical inertness with iodide electrolyte. However, Pt is too expensive to be commercialized. Therefore, in the present study, carbon black counter electrode with Pt and carbon nano tube (CNT) was investigated. The power conversion efficiency with Pt added carbon black electrode was lower than hat of pure Pt electrode which was 6.47 %. By adding 3 wt% Pt to the carbon black counter electrode, the power conversion efficiency was maximized at 5.88 %. On them, additional adding of 1 wt % CNT, the power conversion efficiency (${\eta}$)wasincreasedupto6.21%. The reason of power conversion efficiency improvement with a proper amount of Pt and CNT was examined by comparing the impedance properties measured using EIS.

  • PDF

PTCR Characteristics of Multifunctional Polymeric Nano Composites (PTCR 나노 복합기능 소재의 전류 차단 특성 연구)

  • 김재철;박기헌;서수정;이영관;이성재
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.367-374
    • /
    • 2002
  • Electrical characteristics of crystalline polymer composites filled with nano-sized carbon black particle were studied. The developed composite system exhibited a typical positive temperature coefficient resistance (PTCR) characteristic, where the electrical resistance sharply increased at a specific temperature. The PTCR effect was sometimes followed by a negative temperature coefficient resistance (NTCR) feature with temperature, which seemingly caused by the coagulation of nano-sized carbon black particles in the excessive quantity. The PTCR temperature was controlled by the carbon black content and the external voltage. The change of electric conductivity was shown as a function of carbon black content, and the resistance was constant when the carbon black content was over 20 wt%. The room-temperature resistance was maintained by a repeated heating and cooling. The excellent PTCR characteristic was demonstrated by the low resistance in the initial stage and the instantaneous heating capability.

Influence of carbon black on electrochemical performance of graphene-based electrode for supercapacitor (슈퍼커패시터를 위한 그래핀 기반 전극의 전기화학적 특성에 대한 카본블랙 도입의 효과)

  • Kim, Ki-Seok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • In this work, graphene was prepared by modified Hummers method and prepared graphene was applied to electrode materials for supercapacitor. In addition, to enhance the electrochemical performance of graphene, carbon black was deposited onto graphene via chemical reduction. The effect of the carbon black content incorporated on the electrochemical properties of the graphene-based electrodes was investigated. It was found that nano-scaled carbon black aggregates were deposited and dispersed onto the graphene by the chemical reduction of acid treated carbon black and graphite oxide. From the cyclic voltammograms, carbon black-deposited graphene (CB-GR) showed improved electrochemical performance, i.e., current density, quicker response, and better specific capacitance than that of pristine graphene. This indicates that the carbon black deposited onto graphene served as an conductive materials between graphene layers, leading to reducing the contact resistance of graphene and resulted in the increase of the charge transfer between graphene layers by bridge effect.

  • PDF