• Title/Summary/Keyword: Nakdong watershed

Search Result 207, Processing Time 0.023 seconds

Development of a Multi-Site Calibration Module of Distributed Model - The Case of GRM - (분포형 모형의 다지점 보정 모듈 개발 - GRM 모형을 중심으로 -)

  • Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.103-118
    • /
    • 2012
  • A distributed model can easily obtain discharge at any grids spatially distributed in a watershed. But if there are subwatersheds which have various characteristics in a watershed, it is needed to apply a model calibrated at each subwatershed to obtain reliable simulation results for each subwatershed. In this study, a multi-site calibration module that can calibrate a distributed model at each subwatershed using observed flow data was developed. Methods to select multi-site calibration parameters, to apply subwatershed parameters, and to set subwatershed network information are suggested. Classes to implement multi-site calibration technique are designed and a GUI was developed, and procedures for runoff modelling using subwatershed parameters were established. Multi-site calibration module was applied to Sunsan watershed($977km^2$) of Nakdong river basin. Application results showed that the multi-site calibration technique could be applied effectively to model the calibration for each subwatershed, and the simulation results of subwatershed were improved by the application of multi-site calibration.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

A study of newly recorded genera and species of filamentous blue-green algae (Cyanophyceae, cyanobacteria) in Korea

  • Song, Mi-Ae;Lee, Ok-Min
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.619-627
    • /
    • 2015
  • Cyanobacteria were sampled at five sites in the Han River, Nakdong River, and Geum River watershed from June 2014 to May 2015 and then cultivated. Two genera and five species of the cyanobacteria were newly recorded in Korea. The newly recorded species were Limnothrix redekei, Pseudanabaena galeata, Pseudanabaena amphigranulata, Sphaerospermopsis aphanizomenoides, and Calothrix parietina. As a result, the Korean flora of the cyanobacteria now include four orders, 22 families with 73 genera, 143 species, and two varieties, giving a total of 146 taxa.

Development of the Ecohydrologic Model for Simulating Water Balance and Vegetation Dynamics (물수지 및 식생 동역학 모의를 위한 생태수문모형 개발)

  • Choi, Daegyu;Choi, Hyunil;Kim, Kyunghyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.582-594
    • /
    • 2012
  • A simple ecohydorlogic model that simulates hydrologic components and vegetation dynamics simultaneously based on equations of soil water dynamics and vegetation's growth and mortality is discussed. In order to simulate ungauged watersheds, the proposed model is calibrated with indirected estimated observation data set; 1) empirically estimated annual vaporization, 2) monthly surface runoff estimated by NRCS-CN method, and 3) vegetation fraction estimated by SPOT/VEGETATION NDVI. In order to check whether the model is performed well with indirectly estimated data or not, four upper dam watersheds (Andong, Habcheon, Namgang, Milyang) in Nakdong River watershed are selected, and the model is verified.

Evaluation of the Effectiveness of Low Impact Development Practices in an Urban Area: Non-point Pollutant Removal Measures using EPA-SWMM (EPA-SWMM을 이용한 LID 기법의 비점오염 저감효과 분석)

  • Cho, SeonJu;Kang, MinJi;Kwon, Hyeok;Lee, JaeWoon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.466-475
    • /
    • 2013
  • Non-point source pollution management is one of the most important issues in Korean water quality/watershed management. In recent years, Low Impact Development (LID) has emerged as an effective approach to control stormwater in an urban area. This study illustrates how to design and evaluate the effect of non-point pollutant management using EPA-SWMM LID module and suggests design parameters for modeling LID facilities. In addition, optimal installation locations of LID can be determined by a simple distributed hydrologic model by using SWMM for a long-term.

Mapping of Precision DEM of Nakdong River Watershed Using RS/GIS Technique (RS/GIS 기법을 이용한 낙동강 유역 정밀 DEM 생성)

  • Shin, Hyoung-Sub;Na, Sang-Il;Jung, Sang-Hwa;Im, Dong-Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.150-150
    • /
    • 2011
  • 최근 수자원분야에서 원격탐사(RS) 및 지형정보시스템(GIS)의 비중이 높아짐에 따라 이를 이용하여 1,2 차원 수리분석 향상을 위한 활용이 증가하고 있다. 그러나 현재 사용하고 있는 일반적인 DEM은 하천부분에 대한 고도의 불일치로 인해 수리분석시 정밀한 분석을 하기에는 어려움이 따르므로 이에 대한 개선이 필요하다. 본 연구에서는 현재 사용하고 있는 USGS DEM과 낙동강 측량 자료를 이용하여 낙동강 유역 정밀 DEM 제작 방안을 제시하고자 한다. 측량자료를 이용하여 하천의 DEM을 생성한 후, 자체적으로 개발한 알고리즘을 이용하여 하천 DEM과 USGS DEM을 접합하여 낙동강 유역의 정밀 DEM을 제작한다. 이는 1,2차원 수리모델을 이용하여 분석할 때 결과를 더욱 향상시킬 것으로 기대한다.

  • PDF

Validity of Fecal Pollution Source Tracking using FC/FS Ratio (FC/FS 비율에 의한 분변오염원의 출처파악의 유효성)

  • Park, Ji-Eun;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • This study was conducted to assess the validity of fecal coliforms to fecal streptococci ratio (FC/FS) for distinguishing the human from animal origin of fecal pollution in surface water. FC/FS ratio determined in effluent from municipal wastewater and human feces treatment plant (WWTP) and in downstream close to discharge of human feces was above 4 which indicates human origin. However FC/FS ratios determined seasonally in other water zones of the Nakdong River, even in the same sampling site, varied differently (above 4 or less than 0.7) due to different survival time of FC and FS and other environmental factors such as rainfall in watershed. Compared to other season, FC/FS ratios in winter were much lower regardless of the origin. It is concluded that the FC/FS ratio determined in surface water is not always valid for determining the origin of fecal pollution.

The Correlation between Groundwater Level and Moving Average of Precipitation considering Critical Infiltration in Nakdong River Watershed (한계침투량을 고려한 낙동강유역의 지하수위와 강우이동평균의 상관관계)

  • Yang, Jeong-Seok;Ahn, Tae-Yeon;Park, Jae-Hyeon;Choi, Yong-Sun;Park, Chang-Kun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.263-267
    • /
    • 2007
  • 낙동강유역의 강수량과 지하수위의 관계를 분석한 결과 갈수기에 지하수위가 현저히 저하됨을 확인하였다. 낙동강유역의 여러 관측소에서 지하수위와 강우이동평균의 상관관계를 분석한 결과 20일에서 110일 범위의 이동평균값에서 가장 높은 상관관계를 보여주었다. 유역평균 일최대침투량을 알아내기 위하여 강수량자료를 일정값 이상은 고정하여 수정된 강수량자료로 이동평균값을 구하고 이 값들과 지하수위와의 상관관계를 분석해 본 결과 10mm에서 130mm 범위의 일최대침투량으로 가정하였을 때 가장 높은 상관관계를 보여주었다. 이렇게 수정된 강수자료를 이용하여 이동평균을 구하여 지하수위와의 상관관계를 구해본 결과 낙동강유역의 자료에 대해서 한계침투량을 고려했을 때 상관관계가 더 높아짐을 알 수 있었다.

  • PDF

Development of the Inflow Temperature Regression Model for the Thermal Stratification Analysis in Yongdam Reservoir (용담호 수온성층해석을 위한 유입수온 회귀분석 모형 개발)

  • Ahn, Ki Hong;Kim, Seon Joo;Seo, Dong Il
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.435-442
    • /
    • 2011
  • In this study, a regression model was developed for prediction of inflow temperature to support an effective thermal stratification simulation of Yongdam Reservoir, using the relationship between gaged inflow temperature and air temperature. The effect of reproductability for thermal stratification was evaluated using EFDC model by gaged vertical profile data of water temperature(from June to December in 2005) and ex-developed regression models. Therefore, in the development process, the coefficient of correlation and determination are 0.96 and 0.922, respectively. Moreover, the developed model showed good performance in reproducing the reservoir thermal stratification. Results of this research can be a role to provide a base for building of prediction model for water quality management in near future.