• Title/Summary/Keyword: Nakdong river BOD

Search Result 162, Processing Time 0.025 seconds

The Relationship between Phytoplankton Productivity and Water Quality Changes in Downstream of Nakdong River (낙동강 하류에서 식물플랑크톤 생산력과 수질 변화와의 관계)

  • 박홍기;정종문;박재림;홍용기
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.101-106
    • /
    • 1999
  • The relationship between primary productivity and changes in water quality was investigated at Mulgum station, a site downstream of the Nakdong River, Korea. Phytoplankton production was characterized by blooms of Microcystis aeruginosa during the summer and Stephanodiscus hantzschii during the winter. Primary production and secondary production by bacterioplankton ranged from 1.5~53.5 mg-C/ι day and 0.1~0.3 mg-C/ι day, respectively. Distribution of total organic carbon appeared to be highly correlated with phytoplankton biomass, especially during blooms of M. aeruginosa, when particulate organic carbon was 81% of total organic carbon and the main source of organic materials supplied into the water. The correlation coefficient between chlorophyll-a and BOD was 0.86. Thus it was concluded that autochthonous phytoplankton mostly affected the BOD level. Total bacterial numbers were also highly correlated with chlorophyll-a ($r^2$= 0.84) and the bacterial community appears to be regulated by phytoplankton biomass in this area.

  • PDF

Trend Analysis of Monthly Water Quality Data in Nakdong River Based on Seasonal Mann-Kendall Test (계절 Mann-Kendall 검정을 이용한 낙동강 유역의 월별 수질 장기 경향성 분석)

  • Yun, Jung-hye;Hwang, Syewoon;Kim, Dong-Hyeon;Kim, Sang-Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.153-162
    • /
    • 2015
  • In this study, we analyzed the trends of water quality along the main stream in Nakdong river basin using the recent data and seasonal Mann-Kendall test. Monthly averaged values of DO, BOD, SS, COD, TN, and TP from 1989 to 2014 for 14 stations (including 2 TMDLs stations) were used in the study. The trend analysis results showed that BOD and TP at most stations has decreasing temporal trend except a few stations while COD and SS showed increasing trend at most stations. Temporal trends in TN at 8 stations were found to be statistically significant and 5 of them showed increasing temporal trend. Temporally averaged BOD, COD, TN and TP were generally increasing as going downstream and the worst water quality were found at Goryeong and Hyunpung station. Overall, water quality of Nakdong river especially in COD, SS, and TN getting worse in time at most stations and as going downstream.

Seven-Parameter Log Linear Model for Estimating Constituent Loads in Nakdong River (7변수 대수선형모형을 이용한 낙동강 오염부하량 추정)

  • Lee, A-Yeon;Choi, Dae-Gyu;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1400-1404
    • /
    • 2010
  • In this study the flow duration curves and load duration curves for Nakdong river basin are analyzed. The TANK model is used as s hydrologic simulation model whose parameters are estimated from 8-days intervals flow data measured by Nakdong River Water Environment Laboratory. also in this study a Minimum Variance Unbiased Estimator(MVUE) is confirmed that it provides satisfactory load estimate. The Seven-Parameter Log Linear Model for estimating Total Organic Carbon(TOC) and Biochemical Oxygen Demand(BOD) loads in Nakdong river using a MVUE.

  • PDF

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.202-209
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of a sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. Flow and water quality data, such as BOD, COD, SS, T-N, and T-P data, for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS, and T-P were correlated positively with the river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluents and downstream streams, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between the river flow rate and the water quality factors (COD, SS, TP) was high at river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.493-493
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of the sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. The flow and water quality such as BOD, COD, SS, T-N, and T-P data for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS and T-P were correlated positively with river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluent and downstream stream, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between river flow rate and water quality factors (COD, SS, TP) was high for river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

  • PDF

Long-Term Water Quality Trend Analysis with NTrend 1.0 Program in Nakdong River (NTrend 1.0에 의한 낙동강 수질 장기변동 추세분석)

  • Yu, Jae Jeong;Shin, Suk Ho;Yoon, Young Sam;Song, Jae Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.895-902
    • /
    • 2010
  • The effect of seasonality on water quality variation is very significant. Generally, it reduce the power of the trend extraction. A parametric time-series model was used for detecting trends in historic constituent concentration data. The effect of seasonality is able to remove from time series decomposition technique. According to such statistic methode, long-term water quality trend analysis system (NTrend 1.0) was developed by Nakdong River Water Environmental Research Center. The trend analysis of BOD variation was conducted with NTrend 1.0 at Goreong and Moolkum site in Nakdong river to show the effect of water quality management action plan. Power test of trend extraction was tried each case of 'deseasonalized and deannulized' data and 'deseasonalized' data. Analysis period was from 1989 to 2006, and it's period was divided again three times, 1989~1993, 1994~1999 and 2000~2006 according to action plan period. The BOD trend was downward in Goreong site during three times and it's trend slope was very steep, and upward in Moolkum during 1989~1993, but it was turned downward during 1994~1999 and 2000~2006. It was revealed that it's very effective to reduce the concentration of BOD by water quality management action plan in that watershed. The result of power test was shown that it is high for trend extraction power in case of 'deseasonalized' data.

Construction of Long-term Load Duration Curve Using MOVE.2 Extension Method and Assessment of Impaired Waterbody by Flow Conditions (MOVE.2 확장기법 적용을 통한 장기 부하지속곡선 구축 및 유황조건별 수체손상평가)

  • Kim, Gyeonghoon;Kwon, Heongak;Im, Taehyo;Lee, Gyudong;Shin, Dongseok;Na, Seungmin
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • The purpose of this study is to evaluate on the applicability of Load Duration Curve (LDC) method using Maintenance of Variance Extension types 2 method and sampling data for efficient total maximum daily loads at the Nakbon-A unit watershed in Korea. The LDC method allows for characterizing water quality data such as BOD, TOC, T-N and T-P in this study at different flow regimes(or quarters). BOD usually exceeded the standard value (exceedance probability 50%) at low flow zone. On the other hand, TOC, T-N, T-P usually exceeded the standard value at dry and low flow zone. Seasonally all water quality variables usually exceeded the standard value at Q1(Jan-Mar) and Q2(Apr-Jun) zones. Improvement of effluent control from wastewater treatment plants are effective to improve BOD and T-P.

Selection of Priority Management Target Tributary for Effective Watershed Management in Nam-River Mid-watershed (남강 중권역의 효율적인 유역관리를 위한 중점관리 대상지류 선정)

  • Jung, Kang-Young;Kim, Gyeong-Hoon;Lee, Jae-Woon;Lee, In Jung;Yoon, Jong-Su;Lee, Kyung-Lak;Im, Tae-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • The major 24 tributaries in Nam-River mid-watershed were monitored for discharge and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. According to the analytical results of discharge and water quality monitoring data of 24 tributaries, the mean value of discharge below $0.1m^3/s$ was 62.5% among the monitored tributaries and it mostly exceeded the water quality standards of Nam-river mid-watershed ($BOD_5$ = 3 mg/L, T-P = 0.1 mg/L over). According to the stream grouping method and the water quality delivery load density ($kg/day/km^2$) based on the results of tributary discharge and water quality monitoring, the tributary watersheds for improving the water quality were selected. In the Nam-River mid-watershed, tributaries in the GaJwaCheon, HaChonCheon catchment (Group D, $BOD_5$ = 3 mg/L over) and in the UirYeongCheon, SeokGyoCheon catchment (Group A, T-P = 0.1 mg/L over), which have a small flow (and/or large flow) and a high concentrations of water pollutants. The various water quality improving scheme for tributaries, in accordance with the reduction of potential point source pollution by living sewage and livestock wastewater, should be established and implemented.

Evaluation of Water Quality Characteristics in the Nakdong River using Statistical Analysis (통계분석을 이용한 낙동강유역의 수질변화 특성 조사)

  • Choi, Kil Yong;Im, Toe Hyo;Lee, Jae Woon;Cheon, Se Uk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1157-1168
    • /
    • 2012
  • In this study, we assess changes in water quality trends over time based on certain control measurements in order to identify and analyze the cause of the trend in water quality. The current water pollution in the Nakdong River was analyzed, as it suggests that the significant changes in water quality have occurred in between 2006 and 2010. Based on monthly average data, we have examined for trends of the Nakdong River watershed in water temperature, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP). Moreover, we have investigated seasonal variation of water quality of sites within the Nakdong River Basin by implementing further analyses such as, Correlation Coefficient, Regression Analysis, Hierarchical Clustering Method, and Time Series Analysis on SPSS. Geology and topography of the watershed, controlled by various conditions such as, climate, vegetation, topography, soil, and rain medium, have been affected by the non-homogeneity. Our study suggests that such variables could possibly cause eutrophication problems in the river. One possible way to overcome this particular problem is to lay up a ship on the river by increasing the nasal flow measurement of the Nakdong River during rainy season. Moreover, the water management requires arranging the measurement of the flow in order to secure the river while the numerous construction projects need to be continuously observed. However, the water is not flowing tributary of the reason for the timing to be flowing in a natural state of river water and industrial water intake because agriculture. Therefore, ongoing research is needed in addition to configuration of all observations.

Analysis of Water Quality Improvement Effect by Securing Water Quality Characteristics and Flow Rate in the Geumho River (금호강 수질특성 및 유량확보에 따른 수질개선 효과 분석)

  • Kwak, Insoo;Choi, Boram;Jeon, Hyeryn;Kim, Sunae;Bae, Jaehyeong;Kim, Shin;Kim, Jungmin
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.414-429
    • /
    • 2020
  • For the management of rivers, the target water quality is set by establishing the total amount of water pollution and water environment basic plan. For Geumho river T-P has achieved the target water quality, but for BOD, COD, TOC the target water quality of the water environment basic plan has been exceed for the past five years. Therefore, the flow rate for satisfying the target water quality was simulated by analyzing the load, load density, and pollution contribution rate of the Geumho river using BOD, COD, TOC and by utilizing QUAL-MEV a one-dimensional water quality model. According to the analysis of the load, the BOD, COD and TOC all showed the highest levels at the Geumho C point at 9,832.2 kg/day 20,656.6 kg/day, and 15,545.1 kg/day. The load density was highest at 9.47 kg/day/㎢, 37.55 kg/day/㎢, 30.20 kg/day/㎢, and 17.19 kg/day/㎢, 39.14 kg/day/㎢ in Dalseocheon stream during the wet seasons and dry seasons. Pollution contribution rate was highest at about 25 percent for Palgeocheon stream during the wet season and about 50 percent for Dalseocheon stream during the dry season. In addition, the correlation analysis between organic materials showed in the main stream and tributaty of the Geumho river that COD-TOC was 0.8 or higherthan BOD-COD and BOD-TOC in both the wet seasons and dry seasons. And after surveying the total amount of water pollution and the target quality of the water environment basic plan at Geumho C, it was analyzed that an additional flow tate of 14 times and 22 times was needed as of April 2019 (3.46 ㎥/sec).