• Title/Summary/Keyword: Nakdong River watershed

Search Result 200, Processing Time 0.028 seconds

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

우리나라 인공호의 부영양화 평가 및 예측에 관한 연구

  • 김재윤
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.441-450
    • /
    • 1998
  • The purpose of this study is to evaluate and to predict of eutrophication in lakes by using VollenweiderGECD model and total phosphorus concentration and inflow rate which were measurded in 1993-1996. The results of study was as follows. The annual total phosphorus loading from the watershed was calculated to be 181-195tP /yr at lake Soyang, 591-680tP/yr at lake Chungju, 420-466tP/yr at lake Taechong, 229-278tP/yr at lake Andong, 103-106tP/yr at lake Hapchon, 57-59tP/yr at lake Imha, 194-244tP/yr at lake Namgang, 8386tP /yr at lake Chuam, 99-109tP /yr at lake Somjin. These are discharged, for the most parts, from population and ftshfarm facility. TP loading on the surface area at lake Soyang was 3.0lgP/$m^2$/yr, 2.82gP/$m^2$/yr, 2.84gP/$m^2$/yr, 3. 03gP/$m^2$/yr, at lake Chungju 7.91gP/$m^2$/yr, 6.87gP/$m^2$/yr, 7.38gP/$m^2$/yr, 7.l8gP/$m^2$/yr, at lake Taechong 6.7lgP/$m^2$/yr, 7.25gP/$m^2$/yr, 7.24gP/$m^2$/yr, 6.53gP/$m^2$/yr and TP loading on the surface area of Nakdong river basin, that is, lake Andong, Imha, Hapchon and Namgang were 5.39gP/$m^2$/yr, 4.47gP/$m^2$/yr, 4. 56gP/$m^2$/yr, 4.45gP/$m^2$/yr and 2.20gP/$m^2$/yr, 2.23gP/$m^2$/yr, 2.24gP/$m^2$/yr, 2.l7gP/$m^2$/yr and 4.50gP/$m^2$/ yr, 4.50gP/$m^2$/yr, 4.54gP/$m^2$/yr, 4.43gP/$m^2$/yr and 8.25gP/$m^2$/yr, 8.48gP/$m^2$/yr, 8.48gP/$m^2$/yr, 10. 39gP/$m^2$/yr respectively. Also those of lake Chuam was 2.51gP/$m^2$/yr, 2.61gP/$m^2$/yr, 2.52gP/$m^2$/yr, 2. 54gP/$m^2$/yr and TP loading on the surface area at lake Somjin was analysed 4.09gP/$m^2$/yr, 4.l0gP/$m^2$/yr, 3.98gP/$m^2$/yr,3.73gP/$m^2$/yr. The tropic states of nine lakes can be assessed as eutrophy because phosphorus loading exceeds the critical phosphorus loading by Vollenwelder-GECD model.

  • PDF

Behavior of perfluorinated compounds in advanced water treatment plant (고도 정수처리장에서의 과불화합물 거동)

  • Lim, Chaeseung;Kim, Hyungjoon;Han, Gaehee;Kim, Ho;Hwang, Yunbin;Kim, Keugtae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

Development of Water Level Prediction Models Using Deep Neural Network in Mountain Wetlands (딥러닝을 활용한 산지습지 수위 예측 모형 개발)

  • Kim, Donghyun;Kim, Jungwook;Kwak, Jaewon;Necesito, Imee V.;Kim, Jongsung;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.106-112
    • /
    • 2020
  • Wetlands play an important function and role in hydrological, environmental, and ecological, aspects of the watershed. Water level in wetlands is essential for various analysis such as for the determination of wetland function and its effects on the environment. Since several wetlands are ungauged, research on wetland water level prediction are uncommon. Therefore, this study developed a water level prediction model using multiple regression analysis, principal component regression analysis, artificial neural network, and DNN to predict wetland water level. Geumjeong-Mountain Wetland located in Yangsan-city, Gyeongsangnam-do province was selected as the target area, and the water level measurement data from April 2017 to July 2018 was used as the dependent variable. On the other hand, hydrological and meteorological data were used as independent variables in the study. As a result of evaluating the predictive power, the water level prediction model using DNN was selected as the final model as it showed an RMSE value of 6.359 and an NRMSE value of 18.91%. This research study is believed to be useful especially as a basic data for the development of wetland maintenance and management techniques using the water level of the existing unmeasured points.

Non-point Souce Quantative Analysis Using Watershed model in Nakdong River (HSPF 모형을 이용한 낙동강의 비점오염원 정량화 기법 연구)

  • Kim, Dong-Il;Kim, Kwang-Moon;Han, Kun-Yeun;Park, Tae-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.782-782
    • /
    • 2012
  • 지금까지 우리나라에서는 도시하수, 공장폐수 등의 점오염원에 국한하여 중점적으로 수질관리를 실행하여 부분적으로 효과를 얻을 수 있었으나, 하천과 호소의 수질은 크게 향상되지 않고 있다. 이는 급속한 도시화와 산업발달로 토지개발이 가속화되고 대지, 도로, 주차장 등 불투수층 면적이 늘어남에 따라 비점오염원에 의한 하천, 호소의 수질영향도가 커지고 있기 때문이다. 인구증가로 인해 물 사용량 뿐만 아니라 이에 따라 배출되는 오염원의 종류 및 오염부하량 역시 함께 증가하고 있다. 장래의 수질관리 성공여부는 비점오염원의 효율적인 관리여부가 큰 변수로 작용할 것으로 본다. 따라서 공공수역의 수질관리를 위해서는 토지이용과 지역특성을 고려한 비점오염원 부하량의 합리적인 조사, 오염 부하량 절감을 위한 관리기술의 개발, 비점오염원 관리정책의 개발 및 수질모형을 이용한 정확한 수질예측 등이 필요하다. 따라서 본 연구에서는 공간정보를 바탕으로 한 낙동강 유역에서의 비점오염원 정량화 분석을 수행하고자 한다. 우선 대상유역으로 낙본 G유역을 선정하여 이에 대한 조사를 통해 점오염원의 실측자료를 구축하고 이를 HSPF의 입력하여 모의를 수행하여 대상유역에 대한 실측치를 이용해 모형의 보정과 검증을 수행한다. 이러한 과정을 통해 도출된 결과는 대상유역의 총 오염량을 의미한다. 따라서 위의 과정에서 도출된 매개변수를 이용하고, 점오염원을 제거한 뒤 모의를 재수행하여 나온 결과가 대상유역의 비점오염원의 양이라 판단하였다. 모의 결과 대상유역인 낙본 G유역에서 약 39% 정도의 비점오염원 비율을 보였다. 그러나 수질 및 유량 관측치를 지금까지는 국립환경과학원 낙동강물환경연구소 유량측정데이타를 사용하고 있는데 이 자료는 8일 이상 간헐적으로 측정이 수행되고 있다. 따라서 검 보정 대상이 되는 실측치의 자료의 부족과 부정확한 유역이 있음이 한계점으로 작용한다. 그러므로 추후의 신경망 모형이나 기타 실측치 보간에 있어서의 신뢰도를 높이는 기법 개발이나 측정제도의 보편적인 기술의 증대도 앞으로의 모델링에 있어서 중요할 것으로 판단된다. 또한 유역수질모형의 모델링 과정에서 좀 더 신뢰도 높은 측정자료와 그 측정자료를 활용하여 PEST 보정기법을 적용한다면 더욱 정확한 예측이 이루어질 수 있을 것이며, 본 연구에서의 평가방법을 바탕으로 유역수질모델링이 이루어진다면 보다 더 정확성 높은 비점오염원 정량화와 수질 예측이 수행될 수 있을 것이며 더 나아가 오염총량제의 수행에 효과적으로 적용될 것으로 판단된다.

  • PDF

Long-term Variations of Trophic State and Phosphorus Loading in Lake Andong, Korea (안동호의 장기간의 영양상태와 인부하량)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.249-256
    • /
    • 2002
  • The variation of trophic state was measured in a reservoir (Lake Andong, Korea) from 1993 to 2000. Phosphorus loading from the watershed was estimated by measuring total phosphorus concentration in the main inflowing stream (the Nakdong River). Phosphorus discharge from the pen-type fish farms was estimated from the amount of fish feed and the rate of phosphorus excretion per feed weight. The transparency in summer was about 2.0 m in 1993 and 1994, but it decreased to about 1.2 m in 1997 and 1998, and recovered to about 2.3 m in 1999 and 2000. TP increased from $11-30\;mgP/m^3$ in 1993 to $18-42\;mgP/m^3$ in 1998, but recovered to $8-13\;mgP/m^3$ in 2000, whereas TN decreased slightly from 1.81-2.96 mgN/L in 1993 to 1.17-1.80 mgN/L in 2000. TN/TP ratios decreased from 82-281 in 1993 to 21-143 in 1998, but again increased to 101-209 in 2000 due to the decrease of TP. The average chlorophyll-a concentration in growing season was in the range of $4.8-16.2\;mg/m^3$ from 1993 to 1997, but it decreased to $3.7-5.2\;mg/m^3$ after 1998. Trophic State Index had shown a gradual increase until 1996, and since then it has declined. The major cause of the trophic state recovery is thought to be the removal of fish farms in April 1998.

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. (위천 상류에 건설 중인 화북댐 상 하류 어류군집에 관한 연구)

  • Seo, Jin-Won;Kim, Hee-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.260-269
    • /
    • 2009
  • Hwabuk Dam has been under construction to reduce flood damage in Nakdong River watershed and to supply stable water for middle area of Gyeongbuk Province. Therefore, fish investigation in up and downstream of the dam was conducted from 2004 to 2008 in order to determine any negative effect on fish community due to dam construction and to use as fundamental data for conserving species diversity and maintaining stream health. According to data analysis on water quality, temperature, dissolved oxygen, pH, suspended solids, and total E-coli had seasonal variation, but they did not significantly differ in sites. However, biological and chemical oxygen demand, chlorophyll-a, nitrogen, and phosphorus representing organic matter and nutrient concentration were higher in upper site and decreased to lower site so that they differed by site. Concentration of arsenic among the heavy metals was less than 0.05 mg $L^{-1}$, which is regulated for protection of human health in water quality standard, except for 0.092 mg $L^{-1}$ in June 2005. During the study period, the total number of fish caught from the 6 sites was 10,263 representing 7 families 19 species. Among them, dominant and subdominant species were Korean chub (Zacco koreanus, 62.5%) and Chinese minnow (Rhynchocypris oxycephalus, 10.6%) which inhabit mostly in mid and upper streams, Korea. Among the 19 species, Korean endemic species were 9 species (47.4%) including Korean slender gudgeon (Squalidus gracilis majimae), Korean dark sleeper (Odontobutis platycephala), and Korean shiner (Coreoleuciscus splendidus). There was several individuals of the $1^{st}$-class endangered species, Naktong nose loach (Koreocobitis nahtongensis), caught in 2005${\sim}$2007, and no introduced species of fish was found in entire sampling period. According to result of community analysis, dominance index decreased toward lower site, but diversity and richness indices increased toward lower site. The equation of length-weight relationship on the dominant species was TW=0.000003$(TL)^{3.2603}$. The parameter b in the equation was greater than 3.0 indicating good nutritional condition in the populations. Compared to populations of Korean chub in other streams, the population in Hwabuk Dam watershed had higher mean of condition factor by size indicating better growth rate. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity (IBI) was evaluated and it resulted mostly in good (26${\sim}$35) and excellent (36${\sim}$40) condition in all sites, and the mean of IBI was the highest in site 5. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

Water-Blooms (Green-Tide) Dynamics of Algae Alert System and Rainfall-Hydrological Effects in Daecheong Reservoir, Korea (대청호 조류경보제의 녹조현상 동태와 강우-수문학적 영향)

  • Shin, Jae-Ki;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.153-175
    • /
    • 2016
  • Daecheong Reservoir has suffered eutrophication and water-blooms by blue-green algae from initial impoundment, and algae alert system (AAS) was introduced in 1997. The purpose of this study was to investigate the effect of rainfall and hydrological factors in increase or decrease variability of green-tide and prolonged AAS, studied and analyzed the current situation of AAS has been operating for 19 years (1997~2015) in Daecheong Reservoir. The total issued number of AAS was 46 times, the most frequent period in August and September were 22 times (752 days) and 16 times (431 days), respectively, it accounted for 82.6%. Many number and frequency during this period were significantly associated with rainfall, various discharge and water level. Rainfall and hydrological events are associated with the rainy season of monsoon-Changma and the typhoon, it was concentrated in June~September, total rainfall in this period accounted for 69.9% of the annual rainfall. An increase in inflows was dependent on the intensity, frequency and the amount of rainfall. Accounted for 68.4% of the total annual inflow, it was a time when the most rapidly changing hydrological variability in the reservoir. The total outflow was closely related to rainfall, and compared the distinctive characteristics of hydropower generation and watergate-spillway discharge. In addition, the upreservoir zone of Daecheong Reservoir could be vulnerable to green-tide by regulating discharge of the upstream dam. The issue of AAS was strongly related to the with and without of watergate-spillway discharge. The watergate-spillway discharge had a total of 25 times, it was maximum 17 days from July to September in the year. And the opening times and each duration of the watergate were 1~4 times and the range of 3~37 days, respectively. When the watergate opened, the issue of AAS was maintained to 13 years and the movement of water bodies and green-tide was great about five times than that of non-open, had a profound effect on prolonged AAS within reservoir. In Daecheong Reservoir, Chusori (CHU) area of the So-ok Stream was still showing serious symptoms green-tide levels in the summer, but Janggye (JAN) waters of the main reservoir was pointed out that more important. AAS will be operated by an absolutely consider the rainfall and hydrological effects around the watergate-spillway discharge. The measures of green-tide will be included in the limnological studies more suited to the characteristics of the watershed and reservoir of the our country. Finally, from now on, we will prepare the systematic management and guidelines for vulnerable zone water-blooms that are the source within the reservoir before the monsoon rather than waiting for the arrival of green-tide on the operating stations of AAS.

Temporal and Spatial Variation Analysis of Suspended Solids, Ionic Contents, and Habitat Quality in the Woopo Wetland Watershed (우포늪 수계에서 부유물, 이온농도 및 서식지 특성에 대한 시 ${\cdot}$ 공간적 변이 분석)

  • Bae, Dae-Yeul;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.498-507
    • /
    • 2006
  • The main objective of present study was to evaluate how seasonal rainfall influenced natural habitat conditions of 10 metric habitat variables along with ionic conditions and suspended solids in the Woopo Wetland during August 2002-July 2003. Largest spatial variabilities in total suspended solids (TSS) occurred during the summer monsoon and the inorganic suspended solids (ISS), expressed as a inorganic proportion of total solids, showed linearly increasing trend from the upstream to downstream. This phenomenon was mainly attributed to counter flow of turbid water from the main Nakdong-River. During the flooding, ISS : TSS ratio showed large increases (92%) in the downstream than the upstream (43%). For this reason, transparency declined (mean=0.13 m, range=0.08-0.21 m) largely in the downstream reach and thus, chlorophyll-a concentration showed low values (range: $4.2-8.6\;{\mu}g\;L^{-1}$), indicating a direct influence on primary productivity or algal growth by inorganic turbidity. In the 2nd survey, ISS averaged 4.0 mg $L^{-1}$ (3.3-4.8 mg $L^{-1}$), thus the ISS decreased by 14 fold, compared to the ISS in the 1st survey during the flooding, while organic suspended solids (OSS) values were greater than those of ISS, indicating a dominance of organic solids. This condition was similar to solid contents in the 3rd survey, but showed a large difference compared to the 4th survey during the growing season. Habitat health assessments, based on 10 metric habitat variables, showed that QHEI values were greatest in the growing season (May) than any other seasons and largest spatial variations occurred in the 2nd survey. Overall, dataset suggest that seasonal episodic flooding during the monsoon may largely contribute nutrient cycling and sediment contents in the Woopo Wetland and Topyung Stream.