Temporal and Spatial Variation Analysis of Suspended Solids, Ionic Contents, and Habitat Quality in the Woopo Wetland Watershed

우포늪 수계에서 부유물, 이온농도 및 서식지 특성에 대한 시 ${\cdot}$ 공간적 변이 분석

  • Bae, Dae-Yeul (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Choi, Ji-Woong (School of Bioscience and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (School of Bioscience and Biotechnology, Chungnam National University)
  • Published : 2006.12.30

Abstract

The main objective of present study was to evaluate how seasonal rainfall influenced natural habitat conditions of 10 metric habitat variables along with ionic conditions and suspended solids in the Woopo Wetland during August 2002-July 2003. Largest spatial variabilities in total suspended solids (TSS) occurred during the summer monsoon and the inorganic suspended solids (ISS), expressed as a inorganic proportion of total solids, showed linearly increasing trend from the upstream to downstream. This phenomenon was mainly attributed to counter flow of turbid water from the main Nakdong-River. During the flooding, ISS : TSS ratio showed large increases (92%) in the downstream than the upstream (43%). For this reason, transparency declined (mean=0.13 m, range=0.08-0.21 m) largely in the downstream reach and thus, chlorophyll-a concentration showed low values (range: $4.2-8.6\;{\mu}g\;L^{-1}$), indicating a direct influence on primary productivity or algal growth by inorganic turbidity. In the 2nd survey, ISS averaged 4.0 mg $L^{-1}$ (3.3-4.8 mg $L^{-1}$), thus the ISS decreased by 14 fold, compared to the ISS in the 1st survey during the flooding, while organic suspended solids (OSS) values were greater than those of ISS, indicating a dominance of organic solids. This condition was similar to solid contents in the 3rd survey, but showed a large difference compared to the 4th survey during the growing season. Habitat health assessments, based on 10 metric habitat variables, showed that QHEI values were greatest in the growing season (May) than any other seasons and largest spatial variations occurred in the 2nd survey. Overall, dataset suggest that seasonal episodic flooding during the monsoon may largely contribute nutrient cycling and sediment contents in the Woopo Wetland and Topyung Stream.

본 연구에서는 2002년 8월부터 2003년 7월까지 우포늪 수계에서의 이온농도, 부유물 농도 및 서식지 특성에 대한 계절성 강우패턴의 영향을 평가하였다. 총부유물질(TSS)의 공간적 변이는 하절기의 장마기간 동안 가장 현저하게 나타났다. TSS 중 무기부유물의 상대비율(ISS:TSS)은 크게 증가했으며 이는 상류에서 하류로 갈수록 증가하는 양상을 보였다. 이런 현상은 낙동강 본류로부터 역류하는 탁수에 기인하는 것으로 사료되었다. 장마기간 동안 ISS:TSS의 비율은 상류(43%)보다 하류(92%)에서 크게 증가한 수치를 보였다. 또한 투명도는 하류역으로 갈수록 감소였으며 (평균=0.13 m, 범위=0.08-0.21), 탁수는 조류생장 및 1차생산력에 직접적으로 영향을 미쳐 낮은 엽록소-a값 (범위=$4.2-8.6\;{\mu}g\;L^{-1}$)을 보였다. 2차 조사 시 ISS 농도는 평균 4 mg $L^{-1}$ (범위=3.3-4.8 mg $L^{-1}$)였고, 이런 값은 홍수기 조사인 1차 조사에 비해 14배나 감소한 수치였다. 한편, ISS는 크게 감소한데 비해 OSS의 상대비는 높게 증가했다. 이러한 현상은 3차 조사에서도 같은 양상으로 나타났으나 5월에 실시된 4차 조사에서는 상이한 결과를 보였다. 10개 변수를 기반으로 한 정량적 서식지 평가에 따르면, QHEI는 4차 조사에서 최대값을 보였으며, 2차 조사에서는 가장 큰 공간적 변이를 보였다. 결과적으로, 장마기간의 집중강우는 토평천과 우포늪에서의 토사 침전 및 영양물질 순환에 크게 기여하는 것으로 사료되었다.

Keywords

References

  1. Adamus, P.R. and L.T. Stockwell. 1983. A method for wetland functional assessment: VII. Critical review and evaluation concepts, US Dept. Transportation, Fedral Highway Administration, Report FHWQ IP: 82-83
  2. An, K.G., S.S. Park and J.Y. Shin. 2002. An evaluation of a river health using the index of biological integrity along with relations to chemical and habitat conditions. Korea. Korean J. Limnol. 31: 273-281
  3. Ann, S.W., W.F. Chen, Y.X. Sh, and Q.H. Mi. 2003. Influence of the river ceasing on wetland environment in the yellow river delta. Journal of the Environmental Sciences 12: 139-144 https://doi.org/10.5322/JES.2003.12.2.139
  4. A.P.H.A. 1985. Standard methods for the examination of water and waste water. 16th ed. New York, American Public Health Association. 874pp
  5. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd ed. EPA 841-B-99-002
  6. Gersberg, R.M., R.B. Renner, S.R. Lyon and B.V. Elkins. 1987. Survial of bacteria and viruses in municipal wastewater applied to artificial wetlands. 237-245. In: Aquatic plants for water treatment and resource recovery (K.R. Reddy and W.H. Smith, eds). Magnolia publishing lac. Orlando, Florida
  7. Kim, H.S. 2001. Seasonal changes of phytoplankton community in the Woopo and Mokpo Swamp. Korean J. Limnol. 34: 90-97
  8. Koo, B.H. and K.G. Kim. 2001. A study on the assessment for the functions of inland wetlands using RAM (Rapid Assessment Method). Korea J Env. Res and Tech. 4: 38-48
  9. Kwon, D.H. 2006. Results of the research on Korea's wetlands and tasks. Journal of the Korean Geomorphological Association 13: 25-34
  10. Park, E.J. 2001. Research trend and subject on coastal wetland evolution. J. KAOPG. 35: 27-43
  11. Plafkin, J.L., M.T. Barbour, K.D. Porter, Gross, S.K. and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrate and fish. EPA/444/4-89-001. Office of water regulations and standards. US EPA. Washington. DC, USA
  12. Son, M.W. and Y.G. Jeon. 2003. Physical geographical characteristics of natural wetlands on the downstream reach of nakdong River. J. KRG 9: 66-76
  13. US EPA. 1993. Nitrogen control manual. Office of research and developmenr. Washington, D.C. 249- 270
  14. Yang, H.M. 2003. Total phosphorus removal in Cattail wetland purifying effluent from a night soil treatment plant during its initial operation. J. KOSERRT 6: 49-55