• Title/Summary/Keyword: Naive Bayesian Network

Search Result 41, Processing Time 0.026 seconds

Learning Distribution Graphs Using a Neuro-Fuzzy Network for Naive Bayesian Classifier (퍼지신경망을 사용한 네이브 베이지안 분류기의 분산 그래프 학습)

  • Tian, Xue-Wei;Lim, Joon S.
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.409-414
    • /
    • 2013
  • Naive Bayesian classifiers are a powerful and well-known type of classifiers that can be easily induced from a dataset of sample cases. However, the strong conditional independence assumptions can sometimes lead to weak classification performance. Normally, naive Bayesian classifiers use Gaussian distributions to handle continuous attributes and to represent the likelihood of the features conditioned on the classes. The probability density of attributes, however, is not always well fitted by a Gaussian distribution. Another eminent type of classifier is the neuro-fuzzy classifier, which can learn fuzzy rules and fuzzy sets using supervised learning. Since there are specific structural similarities between a neuro-fuzzy classifier and a naive Bayesian classifier, the purpose of this study is to apply learning distribution graphs constructed by a neuro-fuzzy network to naive Bayesian classifiers. We compare the Gaussian distribution graphs with the fuzzy distribution graphs for the naive Bayesian classifier. We applied these two types of distribution graphs to classify leukemia and colon DNA microarray data sets. The results demonstrate that a naive Bayesian classifier with fuzzy distribution graphs is more reliable than that with Gaussian distribution graphs.

PERFORMANCE EVALUATION OF INFORMATION CRITERIA FOR THE NAIVE-BAYES MODEL IN THE CASE OF LATENT CLASS ANALYSIS: A MONTE CARLO STUDY

  • Dias, Jose G.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.435-445
    • /
    • 2007
  • This paper addresses for the first time the use of complete data information criteria in unsupervised learning of the Naive-Bayes model. A Monte Carlo study sets a large experimental design to assess these criteria, unusual in the Bayesian network literature. The simulation results show that complete data information criteria underperforms the Bayesian information criterion (BIC) for these Bayesian networks.

Chaff Echo Detecting and Removing Method using Naive Bayesian Network (나이브 베이지안 네트워크를 이용한 채프에코 탐지 및 제거 방법)

  • Lee, Hansoo;Yu, Jungwon;Park, Jichul;Kim, Sungshin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.901-906
    • /
    • 2013
  • Chaff is a kind of matter spreading atmosphere with the purpose of preventing aircraft from detecting by radar. The chaff is commonly composed of small aluminum pieces, metallized glass fiber, or other lightweight strips which consists of reflecting materials. The chaff usually appears on the radar images as narrow bands shape of highly reflective echoes. And the chaff echo has similar characteristics to precipitation echo, and it interrupts weather forecasting process and makes forecasting accuracy low. In this paper, the chaff echo recognizing and removing method is suggested using Bayesian network. After converting coordinates from spherical to Cartesian in UF (Universal Format) radar data file, the characteristics of echoes are extracted by spatial and temporal clustering. And using the data, as a result of spatial and temporal clustering, a classification process for analyzing is performed. Finally, the inference system using Bayesian network is applied. As a result of experiments with actual radar data in real chaff echo appearing case, it is confirmed that Bayesian network can distinguish between chaff echo and non-chaff echo.

Bayesian Network-based Data Analysis for Diagnosing Retinal Disease (망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석)

  • Kim, Hyun-Mi;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.269-280
    • /
    • 2013
  • In this paper, we suggested the possibility of using an efficient classifier for the dependency analysis of retinal disease. First, we analyzed the classification performance and the prediction accuracy of GBN (General Bayesian Network), GBN with reduced features by Markov Blanket and TAN (Tree-Augmented Naive Bayesian Network) among the various bayesian networks. And then, for the first time, we applied TAN showing high performance to the dependency analysis of the clinical data of retinal disease. As a result of this analysis, it showed applicability in the diagnosis and the prediction of prognosis of retinal disease.

Performance Improvement in Distant-Talking Speech Recognition by an Integration of N-best results using Naive Bayesian Network (다채널 마이크 환경에서 Naive Bayesian Network의 Decision에 의한 음성인식 성능향상)

  • Ji, Mi-kyong;Kim, Hoi-Rin
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.151-154
    • /
    • 2005
  • 원거리 음성인식에서 인식률의 성능향상을 위해 필수적인 다채널 마이크 환경에서 방 안의 도처에 분산되어있는 원거리 마이크를 사용하여 TV, 조명 등의 주변 환경을 음성으로 제어하고자 한다. 이를 위해 각 채널의 인식결과를 통합하여 최적의 결과를 얻고자 채널의N-best 결과와 N-best 결과에 포함된 hypothesis의 frame-normalized likelihood 값을 사용하여 Bayesian network을 훈련하고 인식결과를 통합하여 최선의 결과를 decision 하는데 사용함으로써 원거리 음성인식의 성능을 향상시키고 또한 hands-free 응용을 현실화하기위한 방향을 제시한다.

  • PDF

Spammer Detection using Features based on User Relationships in Twitter (관계 기반 특징을 이용한 트위터 스패머 탐지)

  • Lee, Chansik;Kim, Juntae
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.785-791
    • /
    • 2014
  • Twitter is one of the most famous SNS(Social Network Service) in the world. Twitter spammer accounts that are created easily by E-mail authentication deliver harmful content to twitter users. This paper presents a spammer detection method that utilizes features based on the relationship between users in twitter. Relationship-based features include friends relationship that represents user preferences and type relationship that represents similarity between users. We compared the performance of the proposed method and conventional spammer detection method on a dataset with 3% to 30% spammer ratio, and the experimental results show that proposed method outperformed conventional method in Naive Bayesian Classification and Decision Tree Learning.

Relation Based Bayesian Network for NBNN

  • Sun, Mingyang;Lee, YoonSeok;Yoon, Sung-eui
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.204-213
    • /
    • 2015
  • Under the conditional independence assumption among local features, the Naive Bayes Nearest Neighbor (NBNN) classifier has been recently proposed and performs classification without any training or quantization phases. While the original NBNN shows high classification accuracy without adopting an explicit training phase, the conditional independence among local features is against the compositionality of objects indicating that different, but related parts of an object appear together. As a result, the assumption of the conditional independence weakens the accuracy of classification techniques based on NBNN. In this work, we look into this issue, and propose a novel Bayesian network for an NBNN based classification to consider the conditional dependence among features. To achieve our goal, we extract a high-level feature and its corresponding, multiple low-level features for each image patch. We then represent them based on a simple, two-level layered Bayesian network, and design its classification function considering our Bayesian network. To achieve low memory requirement and fast query-time performance, we further optimize our representation and classification function, named relation-based Bayesian network, by considering and representing the relationship between a high-level feature and its low-level features into a compact relation vector, whose dimensionality is the same as the number of low-level features, e.g., four elements in our tests. We have demonstrated the benefits of our method over the original NBNN and its recent improvement, and local NBNN in two different benchmarks. Our method shows improved accuracy, up to 27% against the tested methods. This high accuracy is mainly due to consideration of the conditional dependences between high-level and its corresponding low-level features.

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

cmicroRNA prediction using Bayesian network with biologically relevant feature set (생물학적으로 의미 있는 특질에 기반한 베이지안 네트웍을 이용한 microRNA의 예측)

  • Nam, Jin-Wu;Park, Jong-Sun;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.53-58
    • /
    • 2006
  • MicroRNA (miRNA)는 약 22 nt의 작은 RNA 조각으로 이루어져 있으며 stem-loop 구조의 precursor 형태에서 최종적으로 만들어 진다. miRNA는 mRNA의 3‘UTR에 상보적으로 결합하여 유전자의 발현을 억제하거나 mRNA의 분해를 촉진한다. miRNA를 동정하기 위한 실험적인 방법은 조직 특이적인 발현, 적은 발현양 때문에 방법상 한계를 가지고 있다. 이러한 한계는 컴퓨터를 이용한 방법으로 어느 정도 해결될 수 있다. 하지만 miRNA의 서열상의 낮은 보존성은 homology를 기반으로 한 예측을 어렵게 한다. 또한 기계학습 방법인 support vector machine (SVM) 이나 naive bayes가 적용되었지만, 생물학적인 의미를 해석할 수 있는 generative model을 제시해 주지 못했다. 본 연구에서는 우수한 miRNA 예측을 보일 뿐만 아니라 학습된 모델로부터 생물학적인 지식을 얻을 수 있는 Bayesian network을 적용한다. 이를 위해서는 생물학적으로 의미 있는 특질들의 선택이 중요하다. 여기서는 position weighted matrix (PWM)과 Markov chain probability (MCP), Loop 크기, Bulge 수, spectrum, free energy profile 등을 특질로서 선택한 후 Information gain의 특질 선택법을 통해 예측에 기여도가 높은 특질 25개 와 27개를 최종적으로 선택하였다. 이로부터 Bayesian network을 학습한 후 miRNA의 예측 성능을 10 fold cross-validation으로 확인하였다. 그 결과 pre-/mature miRNA 각 각에 대한 예측 accuracy가 99.99% 100.00%를 보여, SVM이나 naive bayes 방법보다 높은 결과를 보였으며, 학습된 Bayesian network으로부터 이전 연구 결과와 일치하는 pre-miRNA 상의 의존관계를 분석할 수 있었다.

  • PDF

Software Quality Classification using Bayesian Classifier (베이지안 분류기를 이용한 소프트웨어 품질 분류)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.11 no.1
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.