Although the network environment is gradually improving, the virtual nature of the network is still the same fact, which has brought a great influence on the supervision of Weibo network public opinion dissemination. In order to reduce this influence, the user information of Weibo network public opinion dissemination is studied by using Python technology. Specifically, the 2019 "Ethiopian air crash" event was taken as the research subject, the relevant data were collected by using Python technology, and the data from March 10, 2019 to June 20, 2019 were constructed by using the implicit Dirichlet distribution topic model and the naive Bayes classifier. The Weibo network public opinion user identity graph model under the "Ethiopian air crash" on June 20 found that the public opinion users of ordinary netizens accounted for the highest proportion and were easily influenced by media public opinion users. This influence is not limited to ordinary netizens. Public opinion users have an influence on other types of public opinion users. That is to say, in the network public opinion space of the "Ethiopian air crash," media public opinion users play an important role in the dissemination of network public opinion information. This research can lay a foundation for the classification and identification of user identity information types under different public opinion life cycles. Future research can start from the supervision of public opinion and the type of user identity to improve the scientific management and control of user information dissemination through Weibo network public opinion.
The main idea of this paper is to combine position information in sentence and query type classification to make the documents ranking to query more accessible. First, the use of conceptual graphs for the representation of document contents In information retrieval is discussed. The method is based on well-known strategies of text comparison, such as Dice Coefficient, with position-based weighted term. Second, we introduce a method for learning query type classification that improves the ability to retrieve answers to questions from Question Answering system. Proposed methods employ naive bayes classification in machine learning fields. And, we used a collection of approximately 30,000 question-answer pairs for training, obtained from Frequently Asked Question(FAQ) files on various subjects. The evaluation on a set of queries from international TREC-9 question answering track shows that the method with machine learning outperforms the underline other systems in TREC-9 (0.29 for mean reciprocal rank and 55.1% for precision).
Multinomial probit model is a popular model for multiclass classification and choice model. Markov chain Monte Carlo (MCMC) method is widely used for estimating multinomial probit model, but its computational cost is high. However, it is well known that variational Bayesian approximation is more computationally efficient than MCMC, because it uses subsets of samples. In this study, we describe multinomial probit model with Gaussian process classification and how to employ variational Bayesian approximation on the model. This study also compares the results of variational Bayesian multinomial probit model to the results of naive Bayes, K-nearest neighbors and support vector machine for the UCI mice protein expression level data.
Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.5
/
pp.576-583
/
2020
This paper proposes a technique to determine the spam comments on YouTube, which have recently seen tremendous growth. On YouTube, the spammers appeared to promote their channels or videos in popular videos or leave comments unrelated to the video, as it is possible to monetize through advertising. YouTube is running and operating its own spam blocking system, but still has failed to block them properly and efficiently. Therefore, we examined related studies on YouTube spam comment screening and conducted classification experiments with six different machine learning techniques (Decision tree, Logistic regression, Bernoulli Naive Bayes, Random Forest, Support vector machine with linear kernel, Support vector machine with Gaussian kernel) and ensemble model combining these techniques in the comment data from popular music videos - Psy, Katy Perry, LMFAO, Eminem and Shakira.
With the rapid growth of Big Data, research on extracting meaningful information is being pursued by both academia and industry. Especially, data characteristics derived from analysis, and researcher intention are key factors for search algorithms to obtain accurate output. Therefore, reflecting both data characteristics and researcher intention properly is the final goal of data analysis research. The data analyzed properly can help users to increase loyalty to the service provided by company, and to utilize information more effectively and efficiently. In this paper, we explore various methods of document-evaluation, so that we can improve the accuracy of searching article one of the most frequently searches used in real life. We also analyze the experiment result, and suggest the proper manners to use various methods.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.4
/
pp.13-29
/
2020
Automobiles have long been an essential part of daily life, but the social costs of car traffic accidents exceed 9% of the national budget of Korea. Hence, it is necessary to establish prevention and response system for car traffic accidents. In order to present a model that can classify and predict the degree of injury in car traffic accidents, we used big data analysis techniques of K-nearest neighbor, logistic regression analysis, naive bayes classifier, decision tree, and ensemble algorithm. The performances of the models were analyzed by using the data on the nationwide traffic accidents over the past three years. In particular, considering the difference in the number of data among the respective injury severity levels, we used down-sampling methods for the group with a large number of samples to enhance the accuracy of the classification of the models and then verified the statistical significance of the models using ANOVA.
Purpose: The purpose of this study was to investigate the availability of software for rehabilitation with the Kinect sensor by presenting an efficient algorithm based on machine learning when classifying the motion data of the PNF pattern if the subjects were wearing a patient gown. Methods: The motion data of the PNF pattern for upper extremities were collected by Kinect sensor. The data were obtained from 8 normal university students without the limitation of upper extremities. The subjects, wearing a T-shirt, performed the PNF patterns, D1 and D2 flexion, extensions, 30 times; the same protocol was repeated while wearing a patient gown to compare the classification performance of algorithms. For comparison of performance, we chose four algorithms, Naive Bayes Classifier, C4.5, Multilayer Perceptron, and Hidden Markov Model. The motion data for wearing a T-shirt were used for the training set, and 10 fold cross-validation test was performed. The motion data for wearing a gown were used for the test set. Results: The results showed that all of the algorithms performed well with 10 fold cross-validation test. However, when classifying the data with a hospital gown, Hidden Markov model (HMM) was the best algorithm for classifying the motion of PNF. Conclusion: We showed that HMM is the most efficient algorithm that could handle the sequence data related to time. Thus, we suggested that the algorithm which considered the sequence of motion, such as HMM, would be selected when developing software for rehabilitation which required determining the correctness of the motion.
Journal of rehabilitation welfare engineering & assistive technology
/
v.10
no.1
/
pp.87-92
/
2016
In this paper, we improved classification performance of benign and malignant lung nodules by including the parenchyma features. For small pulmonary nodules (4-10mm) nodules, there are a limited number of CT data voxels within the solid tumor, making them difficult to process through traditional CAD(computer aided diagnosis) tools. Increasing feature extraction to include the surrounding parenchyma will increase the CT voxel set for analysis in these very small pulmonary nodule cases and likely improve diagnostic performance while keeping the CAD tool flexible to scanner model and parameters. In AdaBoost learning using naive Bayes and SVM weak classifier, a number of significant features were selected from 304 features. The results from the COPDGene test yielded an accuracy, sensitivity and specificity of 100%. Therefore proposed method can be used for the computer aided diagnosis effectively.
Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.112-112
/
2018
최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.