• Title/Summary/Keyword: NaX zeolite

Search Result 154, Processing Time 0.124 seconds

Development of Oxygen Generator for Vehicle with Two Head Vaccum Pump (Two Head Vacuum Pump를 이용한 차랑용 산소 발생기 개발)

  • Joo, Nam-Kyu;Baek, Gyu-Youl;Cha, Jin-Souk;Lee, Jun-Bae;Kim, Nam-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.114-119
    • /
    • 2004
  • An oxyge generator, which is applied to a particular space such as automobile, must consider compactness and lightweight as well as problems caused by noise, vibration and heat dissipation. For these matters, a BLDC motor was adopted to reduce heat while a bed using synthetic zeolite NaX made it possible to generate high-density oxygen with relatively small size. Moreover, owing to the characteristic of synthetic zeolite Nax, a two-head vacuum pump was designed to desorb nitrogen without additional pump unit.

Adsorption Characteristics of Methane and Carbon Dioxide in Zeolite with Flexible Framework (유연한 구조체를 가지는 제올라이트에서 메탄과 이산화탄소의 흡착 특성)

  • Yang Gon Seo
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.248-257
    • /
    • 2024
  • Carbon dioxide is an undesired component of biogas and landfill gas. As a result, it needs to be removed from these mixtures in order to increase their heating value and reduce corrosion during treatment. Zeolites are a class of microporous materials that can be used as adsorbents for the separation of carbon dioxide from gas mixtures. In this work, the pure gas adsorption isotherms of methane and carbon dioxide and the selectivity of their mixture onto LTA-4A, FAU-13X and FAU-NaY adsorbents at temperatures of 273, 298 and 323 K and pressures up to 30 bars were calculated by the Monte Carlo method. Also, the influence of a flexible framework in a set of zeolites on the separation of methane and carbon dioxide was studied. Carbon dioxide adsorption onto the zeolites used in this work was more favorable than methane adsorption. The FAU-13X adsorbent had the highest adsorption capacity among the studied adsorbents. However, the selectivity of carbon dioxide over methane for LTA-4A was the highest. The adsorption capacities of a rigid framework were higher than those of a flexible framework. The influence of the framework flexibility in FAU on adsorption capacity was small. In contrast, its influence on selectivity seemed to be much larger.

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption (중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구)

  • Hwang, Juyeon;Min, Hae-Hyun;Park, You-In;Chang, Jong-San;Park, Yong-Ki;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.432-443
    • /
    • 2018
  • In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.

Kr Atoms and Their Chlustering in Zeolite A

  • Im, U Taek;Jang, Jang Hwan;Jeong, Gi Jin;Heo, Nam Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1023-1029
    • /
    • 2001
  • The positions of Kr atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated zeolite A of unit-cell composition Cs3Na8HSi12Al12O48 (Cs3-A) have been determined. Cs3-A was exposed to 1025 atm of krypton gas at 400 $^{\circ}C$ for four days, followed by cooling at pressure to encapsulate Kr atoms. The resulting crystal structure of Cs3-A(6Kr) (a = $12.247(2)\AA$, R1 = 0.078, and R2 = 0.085) has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C$ and 1 atm. In the crystal structure of Cs3-A(6Kr), six Kr atoms per unit cell are distributed over three crystallographically distinct positions: each unit cell contains one Kr atom at Kr(1) on a threefold axis in the sodalite unit, three at Kr(2) opposite four-rings in the large cavity, and two at Kr(3) on threefold axes in the large cavity. Relatively strong interactions of Kr atoms at Kr(1) and Kr(3) with Na+ ions of six-rings are observed: Na-Kr(1) = 3.6(1) $\AA$ and Na-Kr(3) = $3.08(5)\AA.$ In each sodalite unit, one Kr atom at Kr(1) was displaced $0.74\AA$ from the center of the sodalite unit toward a Na+ ion, where it can be polarized by the electrostatic field of the zeolite, avoiding the center of the sodalite unit which by symmetry has no electrostatic field. In each large cavity, five Kr atoms were found, forming a trigonal-bipyramid arrangement with three Kr(2) atoms at equatorial positions and two Kr(3) atoms at axial positions. With various reasonable distances and angles, the existence of Kr5 cluster was proposed (Kr(2)-Kr(3) = $4.78(6)\AA$ and Kr(2)-Kr(2) = $5.94(7)\AA$, Kr(2)-Kr(3)-Kr(2) = 76.9(3), Kr(3)-Kr(2)-Kr(3) = 88(1), and Kr(2)-Kr(2)-Kr(2) = $60^{\circ}).$ These arrangements of the encapsulated Kr atoms in the large cavity are stabilized by alternating dipoles induced on Kr(2) by four-ring oxygens and Kr(3) by six-ring Na+ ions, respectively.

Effectss of Zeolite contained in Polyimide Membrane for Gas Permeation Properties (폴리이미드/NaX막의 기체투과 특성에 미치는 NaX의 영향)

  • 최익창;김건중;남세종
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.51-52
    • /
    • 1997
  • 1. 서론 : 폴리이미드는 우수한 기계적 강도와 열적, 화학적 안정성으로 인해 최근 막분리 재료로 많이 연구 검토되고 있다. 대부분의 폴리이미드는 비교적 높은 선택도를 가지고 있으나 투과계수가 떨어지는 단점을 지니고 있어소 이를 극복하기 위한 많은 연구가 진행되어 왔다. 그 결과 투과계수를 크게 증가시킨 폴리이미드를 함성하였으나 선택도는 감소하여 투과특성의 상위한계를 넘지는 못하였다. 이 한계를 극복하기 의해서 복합잴를 이용하거나 UV, 플라즈마 처리에 의한 고분자막의 수식 등 많은 방법들이 연구되고 있다. 본 연구는 NaX형 제올라이트를 폴리이미드에 혼화시킨 막으로 산소/질소의 분리투과특성의 개선을 시도하였으며, NaX형 제올라이트와 폴리이미드 혼화방법, 혼화비율 등이 기체투과특성에 미치는 영향을 고찰하였다. 본 실험에 사용된 NaX형 제올라이트는 직접 합성하여 사용하였다. 폴리이미드는 2,3,5,6-Tetramethyl-1,4-phenylenediamine(p-TeMPD)과 (3,3,4,4'-dicarboxyphenyl)-hexafluoropropene-dianhydride(6FDA)로 합성한 6FDA-p-TeMPD 폴리이미드를 사용하였고, 그 투과계수는 122Barrer, 선택도$\alpha$$_{N_2/O_2}$ = 3.4이다.

  • PDF

Characterization of Natural Zeolite for Removal of Radioactive Nuclides (방사성 핵종 제거를 위한 천연 제올라이트 특성 연구)

  • Kim, Hu Sik;Park, Won Kwang;Lee, Ha Young;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • The four natural zeolites collected in Pohang and Gyeongju area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are heulandite, modenite, illite, and illite in Kuryongpo (Ku), Pohang (Po), Yangbuk-A (Ya-A), and Yangbuk-B (Ya-B) samples. The XRF analysis showed that the four zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo (Ku) zeolite was the highest compared to other zeolites. The adsorption capacities of Cs and Sr in the four natural zeolites were compared at $25^{\circ}C$. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were confirmed. The equilibrium process was descried well by Langmuir isotherm model. This study shows that Ya-A zeolite is the most efficient for the $Cs^+$ and $Sr^{2+}$ ion adsorption compared to the other natural zeolites.

Adsorption Characteristics of Ni2+, Zn2+ and Cr3+ by Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트에 의한 Ni2+, Zn2+ 및 Cr3+의 흡착 특성)

  • Kim, Jung-Tae;Lee, Chang-Han;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.739-748
    • /
    • 2020
  • The characteristics of heavy metal ion (Ni2+, Zn2+, and Cr3+) adsorption by zeolite synthesized from Jeju scoria using the fusion and hydrothermal method, were studied. The synthetic zeolite was identified as a Na-A zeolite by X-ray diffraction analysis and scanning electron microscopy images. The equilibrium of heavy metal ion adsorption by synthetic zeolite was reached within 60 min for Ni2+ and Zn2+, and 90 min for Cr3+. The uptake of heavy metal ions increased with increasing pH in the range of pH 3-6 and the uptake decreased in the order of Cr3+ > Zn2+ > Ni2+. For initial heavy metal concentrations of 20-250 mg/L at nonadjusted pH, the adsoption of heavy metal ions was well described by the pseudo second-order kinetic model and was well fitted by the Langmuir isotherm model. The maximum uptake of heavy metal ions obtained from the Langmuir model, decreased in the order of Zn2+ > Ni2+ > Cr3+, differing from the effect of pH on the uptake, which was mainly based on the different pH of the solutions.

Crystal Structure of a Methanol Sorption Complex of Dehydrated Partially Cobalt(Ⅱ)-Exchanged Zeolite A (부분적으로 Co(Ⅱ) 이온으로 치환한 제올라이트 A를 탈수한 후 메탄올을 흡착한 결정구조)

  • Jang, Se Bok;Han, Yeong Uk;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.5
    • /
    • pp.339-344
    • /
    • 1994
  • The crystal structure of a methanol sorption complex of dehydrated partially Co(II)-exchanged zeolite A, $Co_4Na_4-A{\cdot}6.5CH_3OH$ (a = 12.169(1) $\AA)$, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm$\bar3$m at $21(1)^{\circ}C. $Co_4Na_4$-A was dehydrated at $360^{\circ}C\;and\;2{\times}10^{-6}$ torr for 2 days, followed by exposure to about 104 torr of methanol vapor at $22(1)^{\circ}C$ for 1 hr. The structure was refined to final error indices, $R_1$ = 0.061 and $R_2$ = 0.060 with 147 reflections, for which I > $3\sigma(I).$ In this structure, four $Co^{2+}$ ions and 1.5 $Na^+$ ions per unit cell lie at 6-ring positions: the $Na^+$ ions are recessed 0.44 $\AA$ into the sodalite unit and the Co(II) ions extend ca. 0.55 $\AA$ into the large cavity. 2.5 $Na^+$ ions lie in an 8-oxygen ring plane. The 6.5 methanol molecules are sorbed per unit cell. The 6.5 methanol oxygens, all in the large cavity, associate with the 4 $Co^{2+}$ ions and 2.5 $Na^+$ ions.

  • PDF

CO2 PSA Process using Double-Layered Adsorption Column (이단 적층 흡착탑을 이용한 CO2 PSA 공정)

  • Lee, Hwaung;Choi, Jae-Wook;Song, Hyung Keun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • In this study, PSA, known as the most economic process, was used to recover $CO_2$ from the power-plant flue gas. Activated carbon and zeolite molecular sieve 13X were used as adsorbent. Activated carbon has been deemed inadequated adsorbent for separating $CO_2$ from the flue gas. However, highly concentrated $CO_2$ could be obtained as a product on the activated carbon adsorbent using the new operating cycle modifying the rinse step. Also, the recovery of $CO_2$ was improved using double-layered adsorption column packed with the activated carbon and the zeolite 13X simultaneously. Adsorption column was filled with the activated carbon in the feed-end side, and the zeolite 13X in the product-end side. The recovery of $CO_2$ increased about 40% with only 25% zeolite, and increased 67% with 50% zeolite at the experimental conditions of 13% $CO_2$ concentration, 10 SLPM flow rate and 2.2 atm adsorption pressure.

  • PDF

Comparison of Adsorption Characteristics on Zeolite 13X and Silica-aluminar (제올라이트 13X와 실리카-알루미나의 흡착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.729-736
    • /
    • 2011
  • This work is to compare the experiment results by a continuous fixed-bed adsorption of water vapor, acetone vapor, and toluene vapor on zeolite 13X (SAU) and silica-alumina (SAK). SAU and SAK have very different pore structure but similar composition as inorganic adsorbent. The relationship between the equilibrium adsorption capacity and specific pore size range were studied. Adsorption of water vapor was more suitable on SAU than SAK because SAU has relatively more developed pores around $5\;\AA$ than SAK in the pore range of $10\sim100\;\AA$. Adsorption of acetone vapor was more suitable on SAK than SAU because SAK has relatively more developed pores around $5\sim10\;\AA$ than SAK in the pore range of less than $10\;\AA$. Adsorption of toluene vapor was more suitable on SAK than SAU because SAK has relatively more developed pores in the pore range of $10\sim100\;\AA$ than SAK. Adsorption capacity of the adsorbent was closely related to the surface area generated in the specific pore size region. But it was difficult to distinguish the relationships between adsorption capacity and micro area, and the external surface area of adsorbent.