• Title/Summary/Keyword: NaOH aqueous solution

Search Result 192, Processing Time 0.023 seconds

A Study of the Structure and Thermal Property of $Cu^{2+}\;and\;NH_{4}{^+}$ Ion-Exchanged Zeolite A

  • Park, Jong-Yul;Kang, Mi-Sook;Choi, Sang-Gu;Kim, Yang;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.341-346
    • /
    • 1994
  • The frameworks of $(Cu(NH_3)_3OH^+)_x(NH_4^+)_{12-x}-A{\cdot} zH_2O$ which were prepared by the ion-exchange of zeolite A with ammoniac cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution are more stable than those of $Cu_xNa_{12-2x} -A$ obtained by the ion exchange with aqueous cupric nitrate solution. An energetic calculation was made on the relatively stable $(CuOH^+)_2(NH_4^+)_{10}-A{\cdot} 2H_2O$ prepared by the partial evacuation of $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$. The mean stabilization energies of water, OH-, and $NH_4^+$ ions are -30.23 kcal/mol, -60.24 kcal/mol, and -16.65 kcal/mol, respectively. The results of calculation were discussed in terms of framework stability. The $(Cu(NH_3)_3OH^+)_2(NH_4^+)_{10}-A{\cdot} zH_2O$ zeolite shows two step deammoniation reactions. The first deammoniation around 210 $^{\circ}$C (third DSC peak) was attributed to the decomposition of $[Cu(NH_3)_3OH^+]$ ion and the second one around 380 $^{\circ}$C (fourth DSC peak) was ascribed to the decomposition of $NH_4^+$ ion. The activation energies of the first and second deammoniation reactions were 99.75 kJ/mol and 176.57 kJ/mol, respectively.

Kinetics of Seed Growth of α-Ferric Oxyhydroxide (α-Ferric oxyhydroxide 입자의 핵성장 반응에 관한 연구)

  • Seul, Soo-Duk;Shin, Dong-Ock
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.602-609
    • /
    • 1997
  • The seed formation and growth of $\alpha$-ferric oxyhydroxide with aerial oxidative precipitation from aqueous solution of ferrous sulfate with KOH, NaOH, $Na_2CO_3$ and $K_2CO_3$ as precipitants have been studied by free pH drift experiment. It has been shown that all precipitants give same particle formation and growth path, and average particle length from KOH and NaOH as precipitants was about 1.5 times shorter than that of $K_2CO_3$ and $Na_2CO_3$. When initial mole ratio, $R_o=[Fe^{2+}]_o/[OH^-]_o$ of KOH was decreased the particle was grown oxyhydroxide seed growth from aqueous solution of ferrous sulfate with KOH has been studied. The influence of the air flow rate, reaction temperature and initial mole ratio, $R_o=[Fe^{2+}]_o/[OH^-]_o$, on the kinetics of seed growth are investigated by static pH experiment. The oxidation rate of seed growth increased with increase in the air low rate, reaction temperature and initial mole patio. The activation energy of seed growth is 16.16 KJ/mol and the rate equation of seed growth can be written as follows: $-\frac{d[Fe^{2+}]}{dt}=1.46{\times}10^4[P_{o2}]^{0.66}[OH^-]^{2.19}exp(-\frac{16.16}{dt})$.

  • PDF

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Sharma, Sanjeev;Chun, Sang-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2019
  • Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

Preparation of Regenerated Cellulose Fiber via Carbonation. I. Carbonation and Dissolution in an Aqueous NaOH Solution

  • Oh, Sang Youn;Yoo, Dong Il;Shin, Younsook;Lee, Wha Seop;Jo, Seong Mu
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Cellulose carbonate was prepared by the reaction of cellulose pulp and $CO_2$ with treatment reagents, such as aqueous $Zncl_2$ (20-40 wt%) solution, acetone or ethyl acetate, at -5-$0^{\circ}C$ and 30-40 bar ($CO_2$) for 2 hr. Among the treatment reagents, ethyl acetate was the most effective. Cellulose carbonate was dissolved in 10% sodium hydroxide solution containing zinc oxide up to 3 wt% at -5-$0^{\circ}C$. Intrinsic viscosities of raw cellulose and cellulose carbonate were measured with an Ubbelohde viscometer using 0.5 M cupriethylenediamine hydroxide (cuen) as a solvent at $20^{\circ}C$ according to ASTM D1795 method. The molecular weight of cellulose was rarely changed by carbonation. Solubility of cellulose carbonate was tested by optical microscopic observation, UV absorbance and viscosity measurement. Phase diagram of cellulose carbonate was obtained by combining the results of solubility evaluation. Maximum concentration of cellulose carbonate for soluble zone was increased with increasing zinc oxide content. Cellulose carbonate solution in good soluble zone was transparent and showed the lowest absorbance and the highest viscosity. The cellulose carbonate and its solution were stable in refrigerator (-$5^{\circ}C$ and atmospheric pressure).

Effect of Aging Time of AlO(OH) Gel Precipitated by Hydrolysis of Aluminum Sulfate on Crystal Growth of the Flaky α-Al2O3 (황산알루미늄의 가수분해에 의해 석출된 AlO(OH) 겔의 숙성시간이 판상 α-Al2O3의 결정성장에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Suh, Jeong-Kwon;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.575-581
    • /
    • 2006
  • To precipitate the complex gel of flux and aluminum hydroxides gel, aqueous solution of the mixture of $Na_2CO_3\;and\;Na_2PO_4{\cdot}12H_2O$ was added with stirring in aqueous solution of the mixture of $Al_2(SO_4)_3{\cdot}14{\sim}18H_2O,\;Na_2SO_4$, and then the complex gel was aged in $0{\sim}30h\;at\;90^{\circ}C$. As aging time passed, the aluminum hydroxides was grown into the acicular AlO(OH) gel. Also, aging time had an effect on physical properties of the AlO(OH) gel and on crystal growth of the flaky ${\alpha}-Al_2O_3$ prepared by molten-salt precipitation. In this study, the complex gel was crystallized in temperature range of $400{\sim}1,200^{\circ}C$ after drying at $110^{\circ}C$, and then it was investigated to effect of aging time on precipitation temperature, size, thickness, morphology and particle size distribution of the flaky ${\alpha}-Al_2O_3$ crystal. As aging time passed, the flaky a${\alpha}-Al_2O_3$ crystal showed a tendency toward an increase in size and thickness as result from an increase in BET surface area and pore volume of the acicular AlO(OH) gel.

Evaluation of Antibacterial Activities of Chitosan Treated Fiber Waddings (키토산 가공 솜의 향균성능의 평가)

  • Yoo, Hye-Ja;Lee, Hye-Ja
    • Fashion & Textile Research Journal
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2001
  • The effect of chitosan on antibacterial activities of cotton, wool and polyester fibers was investigated by shake flask method. Chitosan was treated in 0.1%, 1% and 2% $NaBO_3$ solution to reduce the molecular weight in 4 steps, wadding of cotton, wool and polyester were treated in 0.1%, 0.3% and 0.5% of chitosan solution which were dissolved in 2% acetic acid aqueous solution. The antibacterial activities of the fiber wadding treated and untreated by chitosan against Escherichia coli, Proteus vulgaris and Stephylococcus aureus were measured by shake flask method. On the untreated waddings, cotton showed better antibacterial activities than wool, but on the treated ones, wool showed better than cotton. The antibacterial activity of polyester was better than that of cotton or wool which preserved before and after the chitosan treatment against the three kinds of bacteria. When the chitosan treated cotton waddings was retreated in NaOH aqueous solution, their bacterial activities decreased. After laundering, the antibacterial activities of the treated cotton and wool waddings kept good, but that of the treated polyester reduced by almost half.

  • PDF

A Study on the Coolingability of Several Quenchants(I) - Coolingability of Selected Aqueous Solution- (각종 담금제의 냉각성능에 관한 연구 I -물을 주성분으로 한 담금제의 냉각성능 평가-)

  • 민수홍;구본권;김상열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.411-418
    • /
    • 1989
  • Quenching effect depends upon coolingability of quenchant as well as the composition of steel. Study on the coolingability of quenchants is important in cooling process and heat treatment of steel. Experimental apparatus and measuring method follow Korean Industrial Standard. Distilled water, different concentration of NaCl, NaOH and Na$_{2}$CO$_{3}$ solutions were compared. Also the effect of temperature of distilled water were calculated. Experimental results were examined with F.E.M. analysis.

Sn02 Two-dimensional Nanostructures Prepared by Solution Reduction Method and Their Gas Sensing Characteristics (용액환원법에 의한 Sn02 2차원 나노구조의 합성과 가스 감응 특성)

  • Park, Hong-Chul;Kim, Hae-Ryong;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.438-443
    • /
    • 2008
  • SnO nanosheets were prepared at room temperature through a reaction between an aqueous solution of $SnCl_2$, $N_2F_4$, and NaOH and were converted into $SnO_2$ nanosheets without a morphological change. The SnO nanosheets were formed through a dissolution-recrystallization mechanism. Uniform and well-dispersed SnO nanosheets with the round-shape morphology were attained when the solution was treated by ultrasonic sound immediately after the addition of NaOH. The $SnO_2$ nanosheets prepared by means of solution reduction under the ultrasonic treatment, and subsequent oxidation at $600^{\circ}C$ showed a high level of gas sensitivity to $C_2H_5OH$ and $CH_3COCH_3$.

Synthesis of zinc oxide nanoparticles via aqueous solution routes (수용액 합성법에 의한 ZnO 나노분말의 합성)

  • Koo, Jin Heui;Yang, Jun Seok;Cho, Soo Jin;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.175-180
    • /
    • 2016
  • ZnO nanoparticles were synthesized by aqueous preparation routes of a precipitation and a hydrothermal process. In the processes, the powders were formed by mixing aqueous solutions of Zn-nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) with NaOH aqueous solution under controlled reaction conditions such as Zn precursor concentration, reaction pH and temperature. Single ZnO phase has been obtained under low Zn precursor concentration, high reaction pH and high temperature. The synthesized particles exhibited flakes (plates), multipods or rods morphologies and the crystallite sizes and shapes would be efficiently controllable by changing the processing parameters. The hydrothermal method showed advantageous features over the precipitation process, allowing the precipitates of single ZnO phase with higher crystallinity at relatively low temperatures below $100^{\circ}C$ under a wider pH range for the Zn precursor concentration of 0.1~1 M.