• Title/Summary/Keyword: NaI 검출기

Search Result 69, Processing Time 0.033 seconds

A Study for Analysis of Image Quality Based on the CZT and NaI Detector according to Physical Change in Monte Carlo Simulation (CZT와 NaI 검출기 물질 기반 물리적 변화에 따른 영상의 질 분석에 관한 연구: 몬테카를로 시뮬레이션)

  • Ko, Hye-Rim;Yoo, Yu-Ri;Park, Chan-Rok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.741-748
    • /
    • 2021
  • In this study, we evaluated image quality by changing collimator length and detector thickness using the Geant4 Application for Tomographic Emission (GATE) simulation tool. The gamma camera based on the Cadimium Zinc Telluride (CZT) and NaI detectors is modeled. In addition the images were acquired by setting 1, 2, 3, 4, 5, and 6 cm collimator length and 1, 3, 5, and 7 mm detector thickness using point source and phantom, which is designed by each diameter (4.45, 3.80, 3.15, 2.55 mm) with 447, 382, 317, and 256 Bq. The sensitivity (cps/MBq) for point source, and signal to noise ratio (SNR) and profile for phantom at the 4.45 mm by drwan the region of interests were used for quantitative analysis. Based on the results, the sensitivity according to collimator length is 2.3 ~ 48.6 cps/MBq for CZT detector, and 1.8 ~ 43.9 cps/MBq for NaI detector. The SNR using phantom is 3.6~9.8 for CZT detector, and 2.9~9.5 for NaI detector. As the collimator length is increased, the image resolution is also improved according to profile results based on the CZT and NaI detector. In addition, the senistivity for detector thickness is 0.04 ~ 0.12 cps/MBq for CZT detector, and 0.03 ~ 0.11 cps/MBq. The SNR using phnatom is 7.3~9.8 count for CZT detector, and 5.9~9.5 for NaI detector. As the detector thickness is increased, the image resolution is decreased according to profile results based on the CZT and NaI detector due to scatter ray. In conclusion, we need to set the geometric material such as detector and collimator to acuquire suitable image quality in nuclear medicine.

Design of Wide-Range radiation measurement system using GM Tube and NaI(TI) Detector (GM Tube 및 NaI(TI) 검출기를 사용한 Wide-Range 방사선 측정 시스템의 설계)

  • Ra, Seung-Tak;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.146-149
    • /
    • 2017
  • In this paper, we propose a wide-range radiation measurement system using GM Tube and NaI(TI) detector. The proposed system is designed as a small module optimized to control and count the detector signal of NaI(Tl) Detector and GM Tube. The radiation dose is measured in a wide-range 0.1uSv/h to 10mSv/h in conjunction with two detectors, and two detectors operate simultaneously at 10uSv/h to 100uSv/h, where the measurement interval overlaps. The radiation dose was selected using a wide-range radiation measurement algorithm that controls the on/off function of the detector in the appropriate interval for the overlapped radiation measurable interval. In order to evaluate the performance of the proposed system, it has been confirmed that the measurement uncertainty of each section is measured as ${\pm}7.5%$ and it operates normally under ${\pm}15%$ of the international standard.

Determination of Spectrum-Exposure Rate Conversion Factor for a Portable High Purity Germanium Detector (휴대형 고순도 게르마늄검출기에 대한 스펙트럼-조사선량율 변환연산자의 결정)

  • Kwak, Sang-Soo;Park, Chong-Mook;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.29-40
    • /
    • 1988
  • A spectrum-exposure rate conversion operator G(E) for a portable HPGe detector used for field environmental radiation survey was theoretically developed on the basis of a space distribution function of gamma flux emitted from a disk source and an areal efficiency of the detector. The radiation exposure rates measured using this G(E) and the portable HPGe. detector connected to a portable multichannel analyzer were compared with those measured by a 3' ${\phi}\;{\times}$3' NaI(Tl) scintillation detector with the reported G(E) and a pressurized ionization chamber. A comparison of the three results showed that the result obtained using the HPGe detector was lower than those determined using the NaI(Tl) detector and ionization chamber by 17% to 29%, The difference obtained is close to that reported in literature. The method developed here can be easily applicable to obtain a G(E) factor suitable to any detector for detecting the exposure rate of environmental gamma radiation, since the spectrum-exposure rate conversion operator can be calculated by a hand calculator.

  • PDF

A Low-Dose High-Resolution SPECT System with CdTe for Small-Animal Imaging Applications: A GATE Simulation Study (GATE 시뮬레이션을 통한 고해상도 저선량용 소동물 영상화를 위한 CdTe 검출기 기반의 SPECT 기기 연구)

  • Park, Su-Jin;Yu, A Ram;Kim, Yeseul;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.162-170
    • /
    • 2013
  • Dedicated single-photon emission computed tomography (SPECT) systems based on pixelated semiconductors are being developed for studying small animal models of human disease. To clarify the possibility of using a SPECT system with CdTe for a high resolution low-dose small animal imaging, we compared the quality of reconstructed images from pixelated CdTe detector to those from a small SPECT system with NaI(Tl). The CdTe detector was $44.8{\times}44.8$ mm and the pixels were $0.35{\times}0.35{\times}5$ mm. The intrinsic resolution of the detector was 0.35 mm, which is equal to the pixel size. GATE simulations were performed to assess the image quality of both SPECT systems. The spatial resolutions and sensitivities for both systems were evaluated using a 10 MBq $^{99m}Tc$ point source. The quantitative comparison with different injected dose was performed using a voxelized MOBY phantom, and the absorbed doses for each organ were evaluated. The spatial resolution of the SPECT with NaI(Tl) was about 1.54 mm FWHM, while that of the SPECT with a CdTe detector was about 1.32 mm FWHM at 30 mm. The sensitivity of NaI(Tl) based SPECT was 83 cps/MBq, while that of the CdTe detector based SPECT was 116 cps/MBq at 30 mm. The image statistics were evaluated by calculating the CNR of the image from both systems. When the injected activity for the striatum in the mouse brain was 160 Bq/voxel, the CNR of CdTe based SPECT was 2.30 while that of NaI(Tl) based SPECT was 1.85. The CNR of SPECT with CdTe was overall higher than that of the NaI(Tl) based SPECT. In addition, the absorbed dose was higher from SPECT with CdTe than those from NaI(Tl) based SPECT to acquire the same quantitative values. Our simulation results indicated that the SPECT with CdTe detector showed overall high performance compared to the SPECT with NaI(Tl). Even though the validation study is needed, the SPECT system with CdTe detector appeared to be feasible for high resolution low-dose small animal imaging.

Determination of the exposure conversion coefficient for 3" X 3" NaI spectrum (3" X 3" NaI 스펙트럼의 조사선량 변환계수 결정)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.73-78
    • /
    • 2001
  • In order to find the exposure conversion coefficients for 3"X3" NaI spectrum, we measured the exposure rates with the pressurized ion chamber at 29 different areas in the range of $4{\sim}23{\mu}R\;h^{-1}$, and also measured the gamma spectra with 3"X3" and 4"X4" NaI detectors, simultaneously. The exposure conversion coefficient of the total energy method was determined using the linear relation between the measured exposure rate and the gamma spectrum energy. In order to find the exposure conversion coefficients of the energy band method, we applied the exposure conversion coefficients recommended by NCRP to the 4"X4" NaI spectra, and calculated the exposure rates due to $^{40}K,\;^{238}U$, and $^{232}Th$ series respectively. Using the linearly proportional relation between the obtained $^{232}Th$ series exposure rate and peak area of 2614 keV that represents the $^{232}Th$ series, we obtained the exposure conversion coefficients for $^{232}Th$ series. We also determined the conversion coefficients for $^{238}U$ series and $^{40}K$ using a similar method.

  • PDF

A Study on the Energy and Time Characteristics of $BaF_2$ Scintillation Detector ($BaF_2$ 검출기의 시간과 에너지 특성연구)

  • Ju, Gwan-Sik;Park, Il-Jin;Kim, Jong-Ho;Nam, Gi-Yong;Baek, Seung-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.267-272
    • /
    • 1997
  • he scintillation detector having $BaF^2$ crystal with 3.6cm dia${\times}$2.0 cm thick was provided. The energy and timing characteristics were measured and compared with NaI(Tl) scintillation detectors, which widely used in unclear medicine. In order to measure the energy spectrum, the radioactive sources used were $^{22}Na,\;^{54}Mn,\;^{57}Co,\;^{137}Cs$ and the source to detector distance was 7cm. For the timing characteristic, NaI(Tl)(1" ${\times}$ 1")-$BaF^2$ and NaI(Tl)(3" ${\times}$ 3")-$BaF^2$ timing coincidence systems were prepared and the used source was $^{22}Na$ emitting 511keV annihilation photons. For the 511keV gamma-ray emitted from $^{22}Na$, It was revealed that the timing response of the $BaF^2$ detector was faster than NaI(Tl)(1" ${\times}$ 1") and NaI(Tl)(3" ${\times}$ 3") detector used in this experimental investigation. The energy characteristics of the $BaF^2$ detector had a good values for about 500keV energy range.

  • PDF

MDA Assessment of NaI(Tl), LaBr3(Ce), and CeBr3 Detectors for Freshly Deposited Radionuclides on the Soil (지표면 침적 방사성핵종에 대한 NaI(Tl), LaBr3(Ce) 및 CeBr3 검출기의 MDA 비교 평가)

  • Lee, Jun-Ho;Kim, Bong-Gi;Lee, Dong Myung;Byun, Jong-In
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • The detection performances of the NaI(Tl), $LaBr_3$(Ce) and $CeBr_3$ scintillation detectors, which can be used to rapidly evaluate the major artificial radionuclides deposited on the soil surface in a nuclear accident or radiological emergency, were compared. Detection performance was assessed by calculating the minimum detectable activity (MDA). The detection efficiency of each detector for artificial radionuclides was semi-empirically determined using mathematical modelling and point-like sources having certified radioactivity. The background gamma-ray energy spectrum for MDA evaluation was obtained from relatively wide and flat grassland, and the MDA values of each detector for the major artificial radionuclides that could be released in nuclear accidents were calculated. As a result, the relative MDA values of each detector regarding surface deposition distribution at normal environmental radiation level were evaluated as high in the order of the NaI(Tl), $LaBr_3$(Ce), and $CeBr_3$ detectors. These results were compared based on each detector's intrinsic and measurement environment background, detection efficiency, and energy resolution for the gamma-ray energy region of the radionuclide of interest.

Automatic Determination of the Energy Pulse-height Relationship in NaI(TI) Spectra (NaI(T1) 검출기 스펙트럼의 에너지-채널 관계 자동결정)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.143-151
    • /
    • 1997
  • As the pulse heights from a NaI(Tl) detector vary with the temperature of the measuring environment a significant change in temperature may affect the energy calibration of the spectrometer. The auto-adjustment of the channel corresponding to a pulse heights can be achieved by introducing an external reference source to compensate the temperature dependency of pulse heights, but unfavorable increases of the Compton continuum are caused due to the external source. In this study, the total absorption peaks dominant in the typical environmental gamma spectrum-239 keV from $^{212}Pb$, 351 keV from $^{214}Pb$, 1460 keV from $^{40}K$ and 2614 keV from $^{208}Tl$ for examples - were used as reference in the correction of energy calibration. With these peaks, the program to calibrate the energy of the s spectrum was developed using Microsoft Visual Basic language. The program developed here was applied to the environmental spectra measured at intervals of 30 minutes in the temperature range of from $-20^{\circ}C$ to $10^{\circ}C$ to demonstrate the validity and applicability. As a result of the test, the correction scheme appeared to be effective in the temperature changes encountered in the usual environment.

  • PDF

Design and Fabrication of HgI2 Sensor for Phosphor Screen based flat panel X-ray Detector (형광체 스크린 기반 평판형 X선 검출기 적용을 위한 요오드화수은 필름 광도전체 센서 설계 및 제작)

  • Park, Ji Koon;Jung, Bong Jae;Choi, Il Hong;Noh, Si Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.189-194
    • /
    • 2014
  • In this study, from a new x-ray detector that combines a columnar CsI:Na scintillation layer with a photosensitive mercuric iodide layer was investigated. In this structure, X-rays are converted into visible light on a thick CsI:Na layer, which is then converted to electric charges in a thin $HgI_2$ bottom layer. The thin coplanar mercuric iodide films as a photosensitive converter requiring only a few tens of volts of bias, associated with a thick columnar coating of phosphor layer, were simulated and designed. The results of this research suggest that the new coplanar x-ray detector with a hybrid-type structure can resolve the following problems: high voltage from the a-Se, and low conversion efficiency from the indirect conversion method. The results of this research suggest that the new CsI:Na/$HgI_2$ x-ray detector with a double-layer type structure can resolve the following problems: high voltage from the direct conversion method, and low conversion efficiency from the indirect conversion method.