• Title/Summary/Keyword: NaFeEDTA

Search Result 51, Processing Time 0.02 seconds

Alteration of Physical and chemical Characteristics of Waterlogged Archaeological Woods After Cleaning (세척 후 수침고목재의 물리.화학적 특성 변화)

  • Cha, Mi-Young;Lee, Kwang-Ho;Kim, Yoon-Soo
    • Journal of Conservation Science
    • /
    • v.19
    • /
    • pp.19-30
    • /
    • 2006
  • Alteration of physical and chemical characteristics and the effect of removal of mineral substances in waterlogged archaeological woods by different cleaning processes were examined using oak wood(Quercus spp.) that was excavated from wetland near Gwangju, Korea. Cleaning methods employed in the present work were (1) tools, (2) deaeration, (3) EDTA and (4) ultrasonic cleaning, which are being currently applied in the field of preservation treatment. Cleaning process were performed independently or continuously. Composition of mineral substances in the waterlogged archaeological wood was almost same as the that of soil in which waterlogged archaeological woods were buried. In case of independent cleaning, tools cleaning efficiently removed the mineral substances on surface. Surface color become brighter after cleaning with EDTA. In contrast, deaeration and ultrasonic cleaning did not show any significant removal of mineral substances. In continuous cleaning process, tool cleaning as the first step treatment showed the same effect as shown in independent cleaning. Although deaeration as the second step cleaning did not remove the mineral substances, it could be assumed to contribute the infiltration of dimensional agents by homogenization of wood. EDTA treatment (the third step cleaning) removed the iron(Fe) and increased the whiteness of wood color. The ultrasonic treatment (the fourth step cleaning) removed the sodium(Na) remained after EDTA treatment and the fine mineral substances.

  • PDF

Statistical Optimization of Medium Components for the Production of Biosurfactant by Bacillus licheniformis K51

  • Joshi Joshi;Sanket Sanket;Yadav Sanjay;Nerurkar Anuradha;Desai Anjana J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.313-319
    • /
    • 2007
  • The nutritional medium requirement for biosurfactant production by Bacillus licheniformis K51 was optimized. The important medium components, identified by the initial screening method of Plackett-Burman, were $H_3PO_4,\;CaCl_2,H_3BO_3$, and Na-EDTA. Box-Behnken response surface methodology was applied to further optimize biosurfactant production. The optimal concentrations for higher production of biosurfactants were (g/l): glucose, $1.1;NaNO_3,\;4.4;MgSO_4{\cdot}7H_2O,\;0.8;KCl,\;0.4;CaCl_2,\;0.27;H_3PO_4,\;1.0ml/l;\;and\;trace elements\;(mg/l):H_3BO_3,\;0.25;CuSO_4,\;0.6;MnSO_4,\;2.2;Na_{2}MoO_4,\;0.5;ZnSO_4,\;6.0;FeSO_4,\;8.0;CoCL_2,\;1.0;$ and Na-EDTA, 30.0. Using this statistical optimization method, the relative biosurfactant yield as critical micelle dilution (CMD) was increased from $10{\times}\;to\;105{\times}$, which is ten times higher than the non-optimized rich medium.

The analysis of Bismuth metal and its alloy by using of cation exchanger (양이온교환수지에 의한 비스무트 지금 및 합금의 분리 정량)

  • Myon-young Park;Byong-Cho Lee;Kee-Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.49-54
    • /
    • 1971
  • It is shown that the impurities of Cu(II), Pb(II), Zn(II) and Ag(I) in Bismuth metal and the components of Pb(II), Zn(II) and Sn(IV) in Bismuth alloy are separated into their components from each other by elutions through $3.14cm^2{\times}10cm$ cation exchange resin, $Dowex\;50w\;{\times}\;8$ (100~200 mesh), column with the mixed solutions of HAc and NaAc as the eluents. The elution curve of Fe(III) has a long tailing and is not separated quantitatively from Bi(III). The eluents used for this separation are as follows; 1M HAc + 0.1M NaAc (pH 3.36) for Fe(III) and Bi (III). 0.3M HAc + 0.3M NaAc (pH 4.70) for Cu(II), Pb(II) and Zn(II). 0.5M HAc + 0.5M NaAc (pH4.70) for Ag(I) and Sn(IV). The analysis of cations eluted are carried out by spectrophotometry and EDTA titrimetry. Their recoveries are more than 99%.

  • PDF

Persulfate Oxidation of 2,4-D: Effect of Hydroxylamine and Chelating Agent (과황산을 이용한 2,4-D의 산화: 하이드록실아민, 킬레이트제의 영향)

  • Choi, Jiyeon;Yoon, Na Kyeong;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.54-64
    • /
    • 2021
  • The chemical warfare agents (CWAs) have been developed for offensive or defensive purposes and used as chemical weapons in war and terrorism. The CWAs are exposed to the natural environment, transported through the water system and then eventually contaminate soil and groundwater. Therefore, effective decontamination technology to remediate CWAs are needed. The CWAs are extremely dangerous and prodution is strictly prohibited, therefore, it is difficult to use CWAs even in experimental purpose. In this study, 2,4-dichlorophenoxyacetic acid (2,4-D) was chosen as a model representative CWA because it is a simulant of anti-plant CWAs and one of the major component of agent orange. The optimum degradation conditions such as oxidant:activator ratio were determined. The effects of hydroxylamine and chelating agents such as citric acid (CA), oxalic acid (OA), malic acid (MA), and EDTA addition to increase Fe2+ activation were also investigated. Scavenger experiments using tert-butyl alcohol (TBA) and ethanol confirmed that although both sulfate (SO4•-) and hydroxyl radical (•OH) existed in Fe2+-persulfate system, sulfate radical was the predominant radical. To promote the Fe2+ activator effect, the effect of hydroxylamine as a reducing agent was investigated. In chelating agents assisted Fe2+-persulfate oxidation, the addition of 2 mM of CA and MA enhanced 2,4-D degradation. In contrast, EDTA and OA inhibited the 2,4-D removal due to steric hindrance effect.

Characterization of the Bacterial Cell Wall Lytic Enzyme Produced by Aspergillus sp. HCLF-4 (Aspergillus sp. HCLF-4에 의해 생성되는 세균세포벽 분해효소의 특성)

  • 임진하;민병례;최영길
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • In this study, we have isolated bacterial cell wall lytic enzyme in the culture supernatant of Aspergillus sp. HCLF-4. This hydrolase showed cell wall lytic activity against Anabaena cylindrica. The extracellular enzyme was produced by Aspergillus sp. HCLF-4 when it was grown in a PDB media containing 0.05% heat killed Micrococcus luteus cells. The molecular weight of lytic enzyme was about 14.3 kDa. The optimal pH and temperature for the activity of this enzyme were 3.0~4.0 and $30^{\circ}C$, respectively. This hydrolase activity was reduced by $Na^{+}$, $Li^{+}$, $Ca^{2+}$, $Cu^{2+}$, $Fe^{3+}$, EDTA, and PMSF, whereas it was increased by $Mg^{2+}$, $Mn^{2+}$>. The enzyme has N-acetylmuramyl-L-amidase or endopeptidase activity.

  • PDF

Characteristics and Action Pattern of Alkaline Protease produced from Aspergillus fumigatus (Aspergillus fumigatus이 생산하는 Alkaline protease의 특성과 작용양상)

  • Cha, Woen-Suep;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.3
    • /
    • pp.348-355
    • /
    • 1989
  • This experiment was conducted to investigate the characteristics of alkaline protease from Aspergillus fumigatus which was isolated from soil as a superior strain for the production of the alkaline protease. The optimum temperature for enzyme activity was $50^{\circ}C$ and optimum pH was 9.0. The enzyme was stable at pH 8.0 to 10.0 and thermal inactivation was shown $30^{\circ}C$. The activity of the enzyme was increased by the addition of $Mn^{++},\;Cu^{++},\;Ba^{++},\;Mg^{++},\;$wheras it was inhibitied by $K^+,\;Fe^{+++},\;Ag^+,\;Pb^{++},\;Na^+,\;Ca^{++},\;Hg^+,\;Zn^{++}$. EDTA. 2, 4-DNP, ${\varepsilon}-amino$ caproic acid did not show inhibitory effect on the proteolytic activity of alkaline protease but P-chloromercuribenzoic acid inhibited the enzyme activity, indicating that reactive sulfhydryl group is required for the enzymatic activity. The reaction of this enzyme followed typical Michael-Menten Kinetics with the Km value of $8.33{\times}10^{-4}mole/{\ell}$ with the Vmax of $47.62{\mu}g/min$. This enzyme had stronger proteolytic activity than trypsin on substrate such as casin and hemoglibin.

  • PDF

Evaluation of Electrolyte and Electrode Spacing for Application of Electrokinetic Remediation (전기동력학적 정화기술 적용을 위한 최적의 전해질 선택 및 전극간의 거리 평가)

  • Park, Geun-Yong;Kim, Woo-Seung;Kim, Do-Hyung;Yang, Jung-Seok;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.6-15
    • /
    • 2013
  • The influence of processing fluids and electrode spacing on the electrokinetic process was evaluated to remediate As-, Cu-, Pb-contaminated soil. Single and mixture of sodium citrate, EDTA and NaOH was used to investigate the metal extraction. EDTA for washing reagent showed the highest removal efficiency. Based on the extraction result, the electrode spacing (20, 40, 60 cm) on the electrokinetic process was investigated to remove the multi-metals from soil. The highest removal was observed at the experiment with 60 cm of electrode spacing, however, the correlation between electrode spacing and removal of metals was not clear. The electrode spacing influenced the amount of accumulated electro-osmotic flow. BCR sequential extraction showed that electrokinetic process removed the fractionation of metals bound to Fe-Mn oxyhydroxide.

Purification and Characterization of Carboxymethyl Cellulase from Loweporus roseoalbus (Loweporus roseoalbus가 생산하는 Carboxymethyl Cellulase의 정제 및 특성)

  • Chang, Hyung-Soo;Kim, Jun-Ho;Yoo, Kwan-Hee
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • A carboxymethyl cellulase (CMCase) has been purified from Loweporus roseoalbus. The molecular weight of the purified CMCase was estimated to be 28.5 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The maximum activity of the purified CMCase was observed at pH 4.0 and $30^{\circ}C$, and stable for pH 3 to 5 to maintain 60% activity. The CMCase activity was activated by SDS and inhibited by PMSF and 1,10-phenanthroline. The enzyme activity was also decreased by the addition of ethylene diamine tetraacetic acid (EDTA), suggesting that the purified CMCase is metalloenzyme.

Metal Protease from Streptomyces spp. - I. Isolation of the Strain and the Enzymatic Properties - (Streptomyces 속균(屬菌)이 생성하는 Metal Protease - 제 1 보 : 균(菌)의 분리(分離) 및 효소학적(酵素學的) 성질(成質) -)

  • Yi, Dong-Heui;Yu, Choon-Bal
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 1980
  • A Streptomyces spp. strain SY 79-1 which was capable of producing metal protease was isolated from soil. The optimal pH and temperature of the protease were around pH 8.0 and $45^{\circ}C$, respectively. The stable pH range of the enzyme was between pH 6.0 to 8.0. The enzyme was stable at $45^{\circ}C$, but it lost the activity about 75 % for 5 min and completely for 30 min when it was treated at $60^{\circ}C$. The activity of the enzyme was inhibited by $Hg^{++},\;Cu^{++},\;Ag^{+}$ and activated by $Mg^{++},\;Mn^{++},\;Co^{++},\;but\;Fe^{++},\;Ca^{++},\;Pb^{++}\;and\;Al^{3+}$ did not affect enzyme activity. This enzyme was strongly inhibited by EDTA, but was not inhibited by 2, 4-DNP, ${\rho}$-CMB, ${\varepsilon}$-aminocaproic acid, cysteine, thiourea, citric acid, oxalic acid and sodium arsenate. When cobalt was added to the EDTA-denatured enzyme, the activity of the enzyme was restored.

  • PDF

Characterization of Extracellular Protease Secreted from Chryseobacterium sp. JK1 (Chryseobacterium sp. JK1이 분비하는 세포외 단백질분해효소 특성)

  • Lee, Yu-Kyong;Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.78-82
    • /
    • 2013
  • A novel Chryseobacterium sp. JK1 strain isolated from soil had been reported that this isolate produced large amount of extracellular protease at mesophilic temperature in previous study. The optimal temperature and pH of extracellular protease were $40^{\circ}C$ and 7.0, respectively, showing narrow range of optimal temperature and relatively broad activity from pH 6.0 to 9.0. In addition, the protease showed greatest activity against skim milk and lowest against bovine serum albumin (BSA). The protease strongly inhibited by ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA) or phenylmethylsulfonyl fluoride (PMSF), and addition of cation $Ag^+$ or $Cu^{2+}$, and slightly inhibited by $Al^{3+}$. No significant inhibition was found with pepstatin, and addition of cation, $K^+$, $Ca^{2+}$, $Na^+$, $Fe^{2+}$ or $Mg^{2+}$. On the contrary, protease was enhanced by addition of divalent cation $Mn^{2+}$ (5 mM). Zymography analysis of concentrated culture supernatant revealed two major bands at 67 and 145 kDa. These results suggest that Chryseobacterium sp. JK1 strain produced extracellular neutral serine proteases which could apply in food industry.