DOI QR코드

DOI QR Code

Evaluation of Electrolyte and Electrode Spacing for Application of Electrokinetic Remediation

전기동력학적 정화기술 적용을 위한 최적의 전해질 선택 및 전극간의 거리 평가

  • Park, Geun-Yong (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Kim, Woo-Seung (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Kim, Do-Hyung (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Yang, Jung-Seok (KIST-Gangneung Institute) ;
  • Baek, Kitae (Department of Environmental Engineering, Chonbuk National University)
  • Received : 2012.04.25
  • Accepted : 2012.11.02
  • Published : 2013.02.28

Abstract

The influence of processing fluids and electrode spacing on the electrokinetic process was evaluated to remediate As-, Cu-, Pb-contaminated soil. Single and mixture of sodium citrate, EDTA and NaOH was used to investigate the metal extraction. EDTA for washing reagent showed the highest removal efficiency. Based on the extraction result, the electrode spacing (20, 40, 60 cm) on the electrokinetic process was investigated to remove the multi-metals from soil. The highest removal was observed at the experiment with 60 cm of electrode spacing, however, the correlation between electrode spacing and removal of metals was not clear. The electrode spacing influenced the amount of accumulated electro-osmotic flow. BCR sequential extraction showed that electrokinetic process removed the fractionation of metals bound to Fe-Mn oxyhydroxide.

Keywords

References

  1. Acar, Y.B. and Alshawabkeh, A.N., 1993, Principles of Electrokinetic Remediation, Environ. Sci. Technol., 27, 2638-2647. https://doi.org/10.1021/es00049a002
  2. Acar, Y.B., Gale, R.J., Alshawabkeh, A.N., Marks, R.E., Puppala, S., Bricka, M., and Parker, R., 1995, Electrokinetic Remediation: Basics and Technology Status, J. Hazard. Mater., 40, 117-137. https://doi.org/10.1016/0304-3894(94)00066-P
  3. Acar, Y.B., and Alshawabkeh, A.N., 1996, Electrokinetic remediation. I: Pilot-scale tests with lead-spiked kaolinite, J. Geotech. Eng. ASCE, 122, 173-185. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(173)
  4. Alshawabkeh, A.N., Yeung, A.T., and Bricka, M.R., 1999, Practical aspects of in-situ electrokinetic extraction, J. Eviron. Eng., 125, 27-35.
  5. Bacon, J.R. and Davidson, C.M., 2008, Is there a future for sequential chemical extraction?, Analyst, 133, 25-46. https://doi.org/10.1039/b711896a
  6. Baek, K., Kim, D.-H., Seo, C.-I., Yang, J.-S., and Lee, J.-Y., 2007, Remediation of Pb-Contaminated Soil by Soil Washing using Hdrochloric Acid, J. Soil & Groudwater Env., 12(3), 17- 22.
  7. Baek, K., Kim, D.H., Park, S.W., Ryu, B.G., Batjargal, T., and Yang, J.S., 2009, Electrolyte-conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing, J. Hazard. Mater., 161, 457-462. https://doi.org/10.1016/j.jhazmat.2008.03.127
  8. Cho, J.-M., Ryu, B.-G., Park, S.-W., Kim, K.J., and Baek, K., 2009, Electrokinetic Remediation of Soil Contaminated with Zn, Ni and F, J. Soil & Groudwater Env., 14(1), 36-43.
  9. Cho, J.-M., Jo, S.-U., Kim, D.-H., Yang, J.-S., and Baek, K., 2011, Electrokinetic Restoration of Saline Soil Accumulated with Nitrate and Sulfate, J. Soil & Groudwater Env., 16(5), 18- 23. https://doi.org/10.7857/JSGE.2011.16.5.018
  10. Dermont, G., Bergeron, M., Mercier, G., and Richer-Lafleche, M., 2008, Soil washing for metal removal: A review of physical/ chemical technologies and field applications, J. Hazard. Mater., 152, 1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043
  11. Gleyzes, C., Tellier, S., Sabrier, R., and Astruc. M., 2001, Arsenic characterisation in industrial soils by chemical extractions. Environ. Technol., 22, 27-38. https://doi.org/10.1080/09593332208618313
  12. Jeon, C.S., Baek, K., Park, J.K., Oh, Y.K., and Lee, S.D., 2009, Adsorption characteristics of As(V) on iron-coated zeolite, J. Hazard. Mater., 163, 804-808. https://doi.org/10.1016/j.jhazmat.2008.07.052
  13. Kim, D.H., Ryu, B.G., Park, S.W., Seo, C.I., and Baek, K., 2009a, Electrokinetic remediation of Zn and Ni-contaminated soil, J. Hazard. Mater., 165, 501-505. https://doi.org/10.1016/j.jhazmat.2008.10.025
  14. Kim, D.H., Jeon, C.S., Ko, S.H., and Yang, J.S., 2009b, Electrokinetic remediation of fluorine-contaminated soil: Conditioning of anolyte, J. Hazard. Mater., 161, 565-569. https://doi.org/10.1016/j.jhazmat.2008.03.084
  15. Kim, G.N., Lee, S.S., Shon, D.B., Lee, K.W., and Chung, U.S., 2010, Development of pilot-scale electrokinetic remediation technology to remove Co-60 and Cs-137 from soil, J. Ind. Eng. Chem., 16, 986-991. https://doi.org/10.1016/j.jiec.2010.05.014
  16. Kim, B.K., Baek, K., Ko, S.H., and Yang, J.W., 2011a, Research and field experiences on electrokinetic remediation in South Korea, Sep. Purif. Technol., 79, 116-123. https://doi.org/10.1016/j.seppur.2011.03.002
  17. Kim, K.J., Kim, D.H., Yoo, J.C., and Baek, K., 2011b, Electrokinetic extraction of heavy metals from dredged marine sediment, Sep. Purif. Technol., 79, 164-169. https://doi.org/10.1016/j.seppur.2011.02.010
  18. Kim, S.O., Kim, W.S., and Kim, K.W., 2005, Evaluation of electrokinetic remediation of arsenic-contaminated soils, Environ. Geochem., 27, 443-453. https://doi.org/10.1007/s10653-005-2673-z
  19. Kim, W.S., Park, G.Y., Kim, D.H., Jung, H.B., Ko, S.H., and Baek, K., 2012, In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration, Electrochim. Acta, 86, 89-95. https://doi.org/10.1016/j.electacta.2012.02.078
  20. Lee, K.Y., Yoon, I.H., Lee, B.T., Kim, S.O., and Kim, K.W., 2009, A Novel Combination of Anaerobic Bioleaching and Electrokinetics for Arsenic Removal from Mine Tailing Soil, Environ. Sci. Technol., 43, 9354-9360. https://doi.org/10.1021/es901544x
  21. Lopez-Sanchez, J.F., Sahuquillo, A., Fiedler, H.D., Rubio, R., Rauret, G., Muntau, H., and Quevauviller, P., 1998, CRM 601, A stable material for its extractable content of heavy metals. Analyst, 123, 1675-1677. https://doi.org/10.1039/a802720j
  22. Moutsatsou, A., Gregou, M., Matsas, D., and Protonotarios, V., 2006, Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities, Chemosphere, 63, 1632-1640. https://doi.org/10.1016/j.chemosphere.2005.10.015
  23. Park, S.-W., Cho, J.-M., Ryu, B.-G., Kim, K.-J., Baek, K., and Yang, J.-S., 2008, Feasibility Study on Acid-enhanced Electrokintic Remediation of Zn and Ni-contaminated Soil, J. Soil & Groudwater Env., 13(6), 17-22.
  24. Park, S.-W., Lee, J.-Y., Kwon, T.-S, Kim, K.-J., Chung, K.-Y., and Baek, K., 2009a, Feasibility Study on the Remediation of Zn-contaminated Railroad Soil using Various Washing Agents, J. Soil & Groudwater Env., 14(1), 78-82.
  25. Park, S.W., Lee, J.Y., Yang, J.S., Kim, K.J., and Baek, K., 2009b, Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc, J. Hazard. Mater, 169, 1168-1172. https://doi.org/10.1016/j.jhazmat.2009.04.039
  26. Park, G.-Y., Kim, D.-H., and Baek, K., 2010, Evaluation of Processing Fluids on Electrokinetic remediation of Cu, Pb, As-contaminated soil, J. Soil & Groudwater Env., 15(5), 1-7.
  27. Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., and Quevauviller, P., 1999, Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1, 57-61. https://doi.org/10.1039/a807854h
  28. Ryu, B.G., Park, S.W., Baek, K., and Yang, J.S., 2009, Pulsed Electrokinetic Decontamination of Agricultural Lands around Abandoned Mines Contaminated with Heavy Metals, Sep. Sci. Technol., 44, 2421-2436. https://doi.org/10.1080/01496390902983778
  29. Ryu, B.G., Yang, J.S., Kim, D.H., and Baek, K., 2010, Pulsed electrokinetic removal of Cd and Zn from fine-grained soil, J. Appl. Electrochem., 40, 1039-1047. https://doi.org/10.1007/s10800-009-0046-5
  30. Ryu, B.G., Park, G.Y., Yang, J.W., and Baek, K., 2011, Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil, Sep. Purif. Technol., 79, 170-176. https://doi.org/10.1016/j.seppur.2011.02.025
  31. Shin, H.-M., 2009, Removal of Cr, Pb and Cd from Reservoir Sediment by Electrokinetic Technique, J. Soil & Groudwater Env., 14(1), 68-77.
  32. Yang, J.S., Lee, J.Y., Baek, K., Kwon, T.S., and Choi, J., 2009, Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions, J. Hazard. Mater., 171, 443-451. https://doi.org/10.1016/j.jhazmat.2009.06.021
  33. Zhang, W.H., Huang, H., Tan, F.F., Wang, H., and Qiu, R.L., 2010, Influence of EDTA washing on the species and mobility of heavy metals residual in soils, J. Hazard. Mater., 173, 369-376. https://doi.org/10.1016/j.jhazmat.2009.08.087

Cited by

  1. Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil vol.24, pp.10, 2017, https://doi.org/10.1007/s11356-017-8720-3
  2. Applicability of Soil Washing with Neutral Phosphate for Remediation of Arsenic-contaminated Soil at the Former Janghang Smelter Site vol.19, pp.4, 2014, https://doi.org/10.7857/JSGE.2014.19.4.045