• Title/Summary/Keyword: NaF electrolyte

Search Result 54, Processing Time 0.027 seconds

Preparation of Graphite Oxide and its Electrochemical Double Layer Capacitor's Performances using Non-Aqueous Electrolyte (TEABF4 & TEMABF4) (산화흑연의 제조 및 전해질(TEABF4 & TEMABF4)에 따른 전기이중층 커패시터의 특성)

  • Yang, Sunhye;Kim, Ick-Jun;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok;Lee, Yun-Pyo;Lee, Young-Hee
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.291-295
    • /
    • 2007
  • The oxidation treatment of needle cokes with 70 wt% of nitric acid and sodium chlorate ($NaClO_3$) was attempted to achieve an electrochemically active material with a large capacitance. The structure of needle cokes was changed to graphite oxide after oxidation treatment of needle cokes with acidic solution having the composition ratio, $NaClO_3$/needle cokes, of 7.5, and the inter-layer distance of the oxidized needle cokes was extended to $6.9{\AA}$with increasing oxygen content. On the other hand, the electrochemical performance of oxidized needle cokes as a polarized electrode for an Electric Double Layer Capacitor (EDLC) was examined with an electrolyte of 1.2 M $TEABF_4$ (tetraethylammonium tetrafluoroborate) and $TEABF_4$ (triethylmethylammonium tetrafluoroborate) in acetonitrile. The capacitor cell using 1.2 M $TEABF_4$/acetonitrile has exhibited smaller electric resistance of $0.05{\Omega}$, and larger capacitance per weight and volume of 32.0 F/g and 25.5 F/mL at the two-electrode system in the potential range 0~2.5 V than that of the capacitor cell using $TEABF_4$. The observed electrochemical performance was discussed with the correlation between the inter-layer distance in graphite oxide structure and the anionic size of electrolyte.

Fabrication and Sensing Properties of Pt-electrode/NASICON Solid Electrolyte/ Carbonate(Na2CO3-K2CO3-CaCO3system ) Electrode for CO2gas sensor (CO2용 Pt전극/NASICON고체전해질/Carbonate (Na2CO3-K2CO3-CaCO3 계) 전극의 가스 센서제작 및 특성)

  • Choi, Jin-Sam;Bae, Jae-Cheol;Bang, Yeong-Il;Lee, Deok-Dong;Huh, Jeung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.269-273
    • /
    • 2002
  • The NASICON solid electrolyte films, $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$(1.5< x < 2.3), was prepared from ceramic slurry by modified doctor-blade process. The NASICON solid electrolyte and fabricated sensors, Pt-electrode/NASICON/Carbonate$(Na_2CO_3-K_2CO_3CaCO_3\; system)$ electrode, were investigated to measure phase, microstructure and e.m.f variation for sensing $CO_2$ concentration. The uniform grain size of $2-4{\mu}m$ and major phase of sodium zirconium silicon phosphate phase, $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$was identified with X-ray diffraction patterns and scanning electron microscopy, respectively. The Nernst's slope of 84 mV/decade for $CO_2$ concentration from 500 to 8000 ppm was obtained at operating temperature of $400^{\circ}C$.

Influences of the BUN and Creatinine Level by Krill (Euphausia superba) Meal and NaF Administration in Rats (Krill 분말 및 NaF 투여가 흰쥐의 BUN 및 Creatinine 농도에 미치는 영향)

  • Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.848-856
    • /
    • 2018
  • The aim of this study was to investigate the hematology and serum chemistry values on Sprague-Dawley rats, used krill (Euphausia superba) meal diet and sodium fluoride (NaF) for 5 weeks. Seven-week-old male rats were divided into five groups and fed experimental diets containing three krill meal contents, administrated orally 10 mg of NaF, basal diet group (BG), basal diet plus 10 mg of NaF group (BFG), 10.0% krill meal plus 10 mg of NaF group (KMF10), 20.0% krill meal plus 10 mg of NaF group (KMF20), and 30.0% krill meal plus 10 mg of NaF group (KMF30). Concentrations of non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), creatinine in sera were significantly lower in the KMF10, KMF20, KMF30 than BFG (p<0.05). In uric acid concentration KMF10 showed no significant difference with the BFG group, was significantly lower than KMF20 and KMF30 (p<0.05). Total calcium (T-Ca) concentrations was all observed to be no significant difference, was increased with krill meal content (p<0.05). Phosphorus (Pi) concentration was no change in the content of krill meal. Accordingly, krill meal was considered to be effective in improving NEFA and BUN, creatinine, uric acid concentration.

A Study on Ion Exchange Characteristics with Composition and Concentration of Electrolyte, Ratio of Ion Exchange Resin (전해질 성분 및 농도, 이온교환 수지 비율에 따른 이온교환 특성 연구)

  • Ahn Hyun-Kyoung;Rhee In-Hyoung;Yoon Hyoung-Jun;Jeong Hyun-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.727-732
    • /
    • 2006
  • The object of this study was to investigate the influence of composition and concentration of electrolyte, ratio of cation to anion exchange resin of mixed ion exchange column in the performance of ion exchange. Also this work examined the removal capability of suspended solids by ion exchange resin and the effect of particule on the characteristics of ion exchange. Breakthrough time was extended as the amount of ions and particles present in liquid was decreased. The case of anion, the breakthrough sequence is $Cl^{-}, but the case of cation, the breakthrough sequence is $Na^{+}. As for the ratio of cation to anion exchange resin of 1:2, the breakthrough time was prolonged compared with that of 1:1 and 1:3. For the electrolyte of equal concentration containing suspended solid, breakthrough time was contracted less than 20%. It results in the increase in the removal capacity of cation exchange resin. For the higher ratio of cation exchange resin, suspended solids are shorten the cation's breakthrough time so that the runtime of ion exchange resin tower is increased.

  • PDF

Bone-like Apatite Formation on Ultrafine-Structure in Modified Electrolytic Solution

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.155-155
    • /
    • 2017
  • Surface modifications are commonly utilized to adjust the properties of the titanium and its alloy surface to the specific needs of the medical applications, but there are disadvantages such as poor osteoconductive properties and low adhesion of bone cell to implant surface. In order to improve these disadvantages, changes in surface properties have an important effect on osseointegration during implantation. In this paper we applied new technological method for improving a unique surface modification using the characteristic of an electrolytic Solution. Thus, in the electrolyte containing NaF in Na2SO4, TiO2 nanoporous was uniformly formed, and HAp nanoparticles were electrodeposited around the TiO2 nanopores, but in the electrolyte containing NH4F in (NH4)H2PO4, the coarse protrusions including HAp nano particles were regularly deposited onto the TiO2 barrier layer. The surface characteristics and the distributed elements and have been investigated by EDS analysis, and ultra-fine structure of surface are carried out using FE-SEM. To investigate the behavior of the anion, the analysis of chemical states was performed by XPS, and the narrow spectrums for Ti2P, Ca 2p, and P 2p seems to be almost similar depending on the characteristics of the electrolyte solution respectively. In addition, Ca 2p spectrum could be resolved into two peaks for Ca 2p3/2 and 2p1/2 at 347.4 and 351.3 eV, which are related to hydroxyapatite. And, the P peak can also be deconvoluted into two peaks for P1/2 and P3/2 levels with binding energy 134.2 and 133.4 eV, respectively. From the result of soaking test, the apatite morphologys were well-formed onto the modified surface according to the different conditions.

  • PDF

Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte

  • Harankahawa, Neminda;Weerasinghe, Sandaranghe;Vidanapathirana, Kamal;Perera, Kumudu
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Pseudo capacitors belong to one group of super capacitors which are consisted with non carbon based electrodes. As such, conducting polymers and metal oxide materials have been employed for pseudo capacitors. Conducting polymer based pseudo capacitors have received a great attention due to their interesting features such as flexibility, low cost and ease of synthesis. Much work has been done using liquid electrolytes for those pseudo capacitors but has undergone various drawbacks. It has now been realized the use of solid polymer electrolytes as an alternative. Among them gel polymer electrolytes (GPEs) are in a key place due to their high ambient temperature conductivities as well as suitable mechanical properties. In this study, composition of a polyacrylonitrile (PAN) based GPE was optimized and it was employed as the electrolyte in a pseudo capacitor having polypyrrole (PPy) electrodes. GPE was prepared using ethylene carbonate (EC), propylene carbonate (PC), sodium thiocyanate (NaSCN) and PAN as starting materials. The maximum room temperature conductivity of the GPE was $1.92{\times}10^{-3}Scm^{-1}$ for the composition 202.5 PAN : 500 EC : 500 PC : 35 NaSCN (by weight). Performance of the pseudo capacitor was investigated using Cyclic Voltammetry technique, Electrochemical Impedance Spectroscopy (EIS) technique and Continuous Charge Discharge (GCD) test. The single electrode specific capacity (Cs) was found out to be 174.31 F/g using Cyclic Voltammetry technique at the scan rate of 10 mV/s and within the potential window -1.2 V to 1.2 V. The same value obtained using EIS was about 84 F/g. The discharge capacity ($C_d$) was 69.8 F/g. The capacity fade over 1000 cycles was rather a low value of 4%. The results proved the suitability of the pseudo capacitor for improving the performance further.

AN ELECTROCHEMICAL STUDY ON THE CORROSION BEHAVIOUR OF AMALGAMS IN THE SALINE SOLUTIONS WITH FLUORIDE COMPOUNDS (불소화합물을 첨가한 생리식염수에서 아말감의 부식거동에 관한 전기화학적 연구)

  • Yun, Chong-Hun;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.396-412
    • /
    • 1997
  • The purpose of this study is to observe the corrosion characteristics of five dental amalgams(CAULK FINE CUT, OPTALLOY II, DISPERSALLOY, TYTIN, and VALIANT) in the solutions with fluoride compound through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylindrical metal mold, and condensed by hydraulic pressure(160 kg/$cm^2$). Each specimen was removed from the metal mold. Specimens were polished with the silicone carbide grinding paper 24 hours after condensation and stored at room temperature for 1 week. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgams in 0.9 % saline solution and in the saline solutions with 2.2 ppm, 0.05 %, 2 % NaF, and 8 % $SnF_2$ at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 30 minutes, the potential scan was begun. The potential scan range was -1500m V to + 800m V(vs. S.C.E.) in the working electrode and the scan rate was 50 mV/sec. The results were as follows, 1. The corrosion potential, the potential of anodic current peak, and transpassive potential in the saline solutions with NaF shifted to lower direction than those in normal saline solution, and the current density in the saline solutions with NaF was higher than that in normal saline solution. The differences were increased as the concentrations of NaF became higher. 2. The corrosion potential and transpassive potential in the saline solution with $SnF_2$ shifted to higher direction than those in normal saline solution, and the current density in the saline solution with $SnF_2$ was higher than that in normal saline solution after the corrosion potential. The anodic polarization curves in the saline solution with $SnF_2$ had no outstanding anodic current peak. 3. The corrosion potentials for high-copper amalgams were much higher than those for CAULK FINE CUT and OPTALLOY II in normal saline solution, but, as the concentrations of fluoride compound became higher, the differences in corrosion potentials between them were decreased. The corrosion potentials had the similarity in the saline solution with 2% NaF or 8% $SnF_2$. 4. The current density for TYTIN was the lowest among the others in normal saline solution and in the saline solution with 2.2 ppm or 0.05 % NaF. 5. There was no significant difference in current density between Pd-enriched VALIANT and other high-copper amalgams.

  • PDF

Analysis of Electrochemical Performance of Reduced Graphene Oxide based Symmetric Supercapacitor with different Aqueous Electrolytes

  • Ravi, Sneha;Kosta, Shivangi;Rana, Kuldeep
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2022
  • Carbon nanomaterials are considered to be the materials of choice for the fabrication of electrochemical energy storage devices due to their stability, cost-effectiveness, well-established processing techniques, and superior performance compared to other active materials. In the present work, reduced graphene oxide (rGO) has been synthesized and used for the fabrication of a symmetric supercapacitor. The electrochemical performance of the fabricated supercapacitors with three different aqueous electrolytes namely 0.5 M H2SO4, 0.5 M H3PO4, and 1.0M Na2SO4 have been compared and analyzed. Among the three electrolytes, the highest areal specific capacitance of 14 mF/cm2 was calculated at a scan rate of 5 mV/s observed with 0.5M H3PO4 electrolyte. The results were also confirmed from the charge/discharge results where the supercapacitor with 0.5M H3PO4 electrolyte delivered a specific capacitance of 11 mF/cm2 at a current density of 0.16 mA/cm2. In order to assess the stability of the supercapacitor with different electrolytes, the cells were subjected to continuous charge/discharge cycling and it was observed that acidic electrolytes showed excellent cyclic stability with no appreciable drop in specific capacitance as compared to the neutral electrolyte.

Determination of Chromium(VI) by Differential-Pulse Polarography with a Sodium Borate Supporting Electrolyte

  • Hong, Tae-kee;Czae, Myung-Zoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.77-80
    • /
    • 1988
  • A suituable choice of supporting electrolyte medium for trace level determinations of chromium(VI) by differential pulse polarography is described. A comparative study suggests that sodium borate buffer is superior to ammonium acetate, ammonium tartrate, and especially to NaF which was recently known to be one of the most proper medium for the purpose. With 0.01 M borate, the best combination of high sensitivity, well-defined base line, and freedom from common interferents was attained. With $5.0{\times}10^{-7}$M Cr(VI), tenfold excesses of Cu(II) and Fe(III), and a five hundred-fold excess of $Cl^-$ do not change the peak current by more than about 1%. And the detection limit was $5.0{\times}10^{-8}$M Cr(VI).

Effect of Electrolyte Composition on Corrosion Behavior of PEO Treated AZ91 Mg Alloy

  • Park, Kyeong Jin;Lee, Jae Ho
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.227-231
    • /
    • 2009
  • Mg and Mg alloys have been used for lots of applications, including automobile industry, aerospace, mobile phone and computer parts owing to low density. However, Mg and Mg alloys have a restricted application because of poor corrosion properties. Thus, improved surface treatments are required to produce protective films that protect the substrate from corrosive environments. Environmental friendly Plasma Electrolytic Oxidation (PEO) has been widely investigated on magnesium alloys. PEO process combines electrochemical oxidation with plasma treatment in the aqueous solution. In this study, AZ91 Mg alloys were treated by PEO process in controlling the current with PC condition and treated time, concentration of NaF, NaOH, and $Na_2SiO_3$. The surface morphology and phase composition were analyzed using SEM, EDS and XRD. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimen. Additionally, salt spray tests were carried out to examine and compare the corrosion properties of the PEO treated Mg alloys.