• 제목/요약/키워드: NaCl salt

검색결과 1,027건 처리시간 0.035초

Effect of Abalone Hydrolysates Encapsulated by Double Emulsion on the Physicochemical and Sensorial Properties of Fresh Cheese

  • Choi, HeeJeong;Kim, Soo-Jin;Lee, Sang-Yoon;Choi, Mi-Jung
    • 한국축산식품학회지
    • /
    • 제37권2호
    • /
    • pp.210-218
    • /
    • 2017
  • The intake of dietary salt through food now exceeds current nutritional recommendations and is thought to have negative effects on human health, such as the increasing prevalence of hypertension. This study was performed to investigate whether $W_1/O/W_2$ double emulsions can be used to enhance the saltiness of cheese without increasing the salt content ($W_1$ is distilled water or 1% abalone hydrolysate, and $W_2$ is 1% NaCl or 1% abalone hydrolysate + 1% NaCl solution). We also investigated the effect of adding abalone hydrolysate to the double emulsion as a saltiness enhancer. The cheeses were physico-chemically evaluated to determine curd yield, pH value, moisture content, color, texture, salt release rate, and sensory properties. No significant differences were observed in curd yield, pH value, moisture content, lightness, or redness between the cheeses made with and without the double emulsion. However, in the evaluation of salt release rate, fresh cheese made with double emulsion ($W_1$ = distilled water, $W_2$ = 1% NaCl + 1% abalone hydrolysate) was detected earlier than the control or the other treatments. In the sensory evaluation, fresh cheese made with the double emulsion showed higher scores for saltiness and overall preference than the control or the other treatments. We concluded that abalone hydrolysate encapsulated in a double emulsion ($W_1$ is water and $W_2$ is abalone hydrolysate and NaCl solution) could enhance the saltiness of fresh cheese while maintaining the same salt concentration, without altering its physical properties.

Ethyl methane sulfonate(EMS)에 의해 변이된 애기장대 종자 집단으로부터 염 내성 돌연변이체 선발 및 특성 분석 (Isolation and characterization of ethyl methane sulfonate(EMS) Arabidopsis mutants capable of germination under saline conditions.)

  • 정문수;정정성;김철수
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.641-645
    • /
    • 2007
  • 염 내성 돌연변이체를 선발하기 위하여, ethyl methane sulfonate(EMS)로 처리된 돌연변이 종자 집단을 사용하였다. 150 mM NaCl 고염 스트레스 하에서 종자 발아 내성을 보이는 세 종류의 EMS 돌연변이체를 선발하였다. 세 종류의 EMS 돌연변이체들 중, salt tolerance 42-14(sto42-14) 돌연변이체는 175 mM NaCl 고농도에서 종자 발아율이 대조구(WT)에 비해 7배 이상의 높은 발아율을 보였다. 또한 내염성 sto42-14 돌연변이체는 glucose(Glc)에 대해서도 비감수성을 갖고 있음을 관찰되었고, 흥미롭게도 sto42-14돌연변이체에 $20{\mu}M$ gibberellin(GA)을 처리한 결과, 대조구에 비해 하배축과 뿌리의 생장이 억제됨을 관찰할 수 있었다. 이러한 결과를 바탕으로, 고염 내성 sto42-14 돌연변이체는 Glc 뿐만 아니라 GA호르몬 반응에도 관련되어져 있음을 알 수 있다.

New Approaches to Production of Turkish-type Dry-cured Meat Product "Pastirma": Salt Reduction and Different Drying Techniques

  • Hastaoglu, Emre;Vural, Halil
    • 한국축산식품학회지
    • /
    • 제38권2호
    • /
    • pp.224-239
    • /
    • 2018
  • In this study, the possible changes in the quality characteristics of pastirma, Turkish-type dry-cured meat product, produced by using two different salts (NaCl-KCl) in a curing mixture and two different production techniques (natural and controlled condition) were examined. Moisture, pH, salt, sodium, potassium, TBA, fat, water activity, instrumental colour, texture, and sensory analyses were implemented in order to determine the possible effects of these applications. Fat, aw, pH, colour, tiobarbituric acid (TBA), texture, salt, Na and K values may allow these desired modifications in pastirma production to be limited. The substitution of 15% KCl instead of NaCl was acceptable in terms of the sensorial properties of the pastirma. However, the sensory analyses did not allow for using a higher KCl instead of NaCl because both the hardness and chewiness in the texture of the pastirma samples salted with 30% of KCl were not scored positively. Besides this, negative effects, which may occur during the pastirma production under natural conditions, can be eliminated by the production being under controlled conditions.

Expression of Antioxidant Isoenzyme Genes in Rice under Salt Stress and Effects of Jasmonic Acid and ${\gamma}$-Radiation

  • Kim, Jin-Hong;Chung, Byung-Yeoup;Baek, Myung-Hwa;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Myung-Chul;Kim, Jae-Sung
    • Journal of Applied Biological Chemistry
    • /
    • 제48권1호
    • /
    • pp.1-6
    • /
    • 2005
  • Analysis of chlorophyll (Chl) fluorescence implicated treatment of 40 mM NaCl decreased maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), actual quantum yield of PSII (${\Phi}_{PSII}$), and photochemical quenching (qP) in rice, but increased non-photochemical quenching (NPQ). Decreases in Fv/Fm, ${\Phi}_{PSII}$, and qP were significantly alleviated by $30\;{\mu}M$ jasmonic acid (JA), while NPQ increase was enhanced. Transcription levels of antioxidant isoenzyme genes were differentially modulated by NaCl treatment. Expression of cCuZn-SOD2 gene increased, while those of cAPXb, CATb, and CATc genes decreased. JA prevented salt-induced decrease of pCuZn-SOD gene expression, but caused greater decrease in mRNA levels of cAPXa and Chl_tAPX genes. Investigation of vacuolar $Na^+/H^+$ exchanger (NHX2) and 1-pyrroline-5-carboxylate synthetase (P5CS) gene expressions revealed transcription level of NHX2 gene was increased by JA, regardless of NaCl presence, while that of P5CS gene slightly increased only in co-presence of JA and NaCl. Unlike JA, ${\gamma}$-radiation rarely affected expressions of antioxidant isoenzyme, NHX2, and P5CS genes, except for increase in mRNA level of Chl_tAPX and decrease in that of pCuZn-SOD. These results demonstrate enhanced salt-tolerance in JA-treated rice seedlings may be partly due to high transcription levels of pCuZn-SOD, NHX2, and P5CS genes under salt stress.

Role of Calcium in the Osmoregulation under Salt Stress in Dunaliella salina

  • Lee, Sun-Hi
    • Journal of Plant Biology
    • /
    • 제38권3호
    • /
    • pp.243-250
    • /
    • 1995
  • Involvement of calcium in signal transduction of salt stress was investigated in 1.7 M NaCl adapted Dunaliella salina, extremely halotolerant, unicellular green alga. When hyperosmotic (3.4 M NaCl) or Hypoosmotic (0.8 M NaCl) stress was treated, extracellular calcium was influxed in or intracellular calcium effluxed from D. salina, respectively, and these fluxes were proportional to the degree of stress. This might indicate indirectly that the change of calcium level occurred within the cells. In addition, the change of calcium flux was ahead of glycerol synthesis which has been known as the physiological response to salt stress. Osmoregulation was affected byextracellular calcium concentration, and increase of glycerol content as an osmoticum was inhibited about 50% by treatment of TFP and W-7 known as calmodulin specific inhibitors. Furthermore, in the case of the hyperosmotic stressed cells, the amount of 21 kD and 39 kD protein appeared to be calcium binding protein were increased. Among these, the 39 kD protein was detected only in the hyperosmotic stressed cells. The results obtained in the present work suggest that the possibility of calcium as a second messenger in the transduction of salt stress signal exists in the osmoregulation system of D. salina.

  • PDF

Selective Homologous Expression of Recombinant Manganese Peroxidase Isozyme of Salt-Tolerant White-Rot Fungus Phlebia sp. MG-60, and Its Salt-Tolerance and Thermostability

  • Kamei, Ichiro;Tomitaka, Nana;Motoda, Taichi;Yamasaki, Yumi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.248-255
    • /
    • 2022
  • Phlebia sp. MG-60 is the salt-tolerant, white-rot fungus which was isolated from a mangrove forest. This fungus expresses three kinds of manganese peroxidase (MGMnP) isozymes, MGMnP1, MGMnP2 and MGMnP3 in low nitrogen medium (LNM) or LNM containing NaCl. To date, there have been no reports on the biochemical salt-tolerance of these MnP isozymes due to the difficulty of purification. In present study, we established forced expression transformants of these three types of MnP isozymes. In addition, the fact that this fungus hardly produces native MnP in a high-nitrogen medium (HNM) was used to perform isozyme-selective expression and simple purification in HNM. The resulting MGMnPs showed high tolerance for NaCl compared with the MnP of Phanerochaete chrysosporium. It was worth noting that high concentration of NaCl (over 200 mM to 1200 mM) can enhance the activity of MGMnP1. Additionally, MGMnP1 showed relatively high thermo tolerance compared with other isozymes. MGMnPs may have evolved to adapt to chloride-rich environments, mangrove forest.

토양에의 고농도 Na 및 Cl 염류가 토마토의 생육 및 무기성분 흡수에 미치는 영향 (Effect of High Concentrations of Sodium or Chloride Salts in Soil on the Growth of and Mineral Uptake by Tomatoes)

  • 강경희;권기범;최영하;김회태;이한철
    • 생물환경조절학회지
    • /
    • 제11권3호
    • /
    • pp.121-126
    • /
    • 2002
  • 본 연구는 토양에의 고농도 Na 및 Cl 염류처리가 토마토의 생육과 무기성분 흡수, 광합성 속도 및 수분 포텐셜에 미치는 효과를 검토코자 수행되었다. 초장, 생체중, 건물중 등 생육은 대조구에 비해 모든 염 처리구에서 억제되었으나, 토양의 pH와 EC와는 관계가 없었다. 토마토의 생육억제 효과는 Na계열에서는 Cl, SO$_4$, CO$_3$, PO$_4$, NO$_3$ 순으로, 그리고 Cl 계열에서는 Na, K, Mg, NH$_4$, Ca순으로 컸으며, Na 계열이 Cl 계열보다 컸다. 토마토의 수량은 대조구보다 모든 염 처리구에서 30%~10%적었으며,특히 NaCl처리구에서 더욱 적었다. 엽록소 함량, 광합성 속도, 기공전도도는 대조구에 비해 염 처리구에서 낮았다. 무기양분 함량은 대조구보다 모든 염류에서 낮았다. N 함량은 NaNO$_3$, NH$_4$Cl 및 대조구가 11% 내외로 가장 높았으나 Na 계열에서는 NaCl 및 NaHCO$_3$ 처리구가, Cl 계열에서는 KCI 처리구가 5.5~6.0% 내외로 낮았다. K 함량은 Cl 계열보다 Na 계열이 적었으며, 특히 NaCl과 $Na_2$SO$_4$ 처리구에서 더욱 낮았다. Mg 및 Ca 함량은 대조구보다 낮았으며, NaCl과 KCl 처리에서 매우 낮아 Na 및 K 이온과 상당한 길항관계를 보였다 전반적으로 각 이온의 흡수는 KCl및 NaCl처리구에서 가장 낮은 경향이었다.

염 및 건조스트레스 하에서 포복형 백리향의 생육과 Abscisic Acid 농도변화 (Growth and Abscisic Acid Changes of Creeping Thyme in the Exposure of NaCl and Drought)

  • 김민제;엄석현
    • 한국약용작물학회지
    • /
    • 제17권5호
    • /
    • pp.328-334
    • /
    • 2009
  • Experimental purpose was to evaluate growth characteristic and abscisic acid (ABA) responses against salt/drought stresses. In the shoot biomass, creeping thyme was tolerated in mild NaCl stress, ranging 0 to 100 mM, while it was severely reduced in higher salinity. Under constant drought stress, the shoot biomass of creeping thyme showed a worse value compared to that of 100 mM NaCl treatment. Chlorophyll degradation was more severe in immature leaf than mature leaf under salt and drought stresses. In salt stress, immature leaf produced much amounts of ABA compared to mature leaf and also immature leaf showed faster increase of ABA than that of mature leaf. In drought stress, immature leaf responded to stress within 24 hours by the increase of ABA, while mature leaf responded to at 72 hours. Our results recommended that the optimal salinity level of creeping thyme was 50~100 mM NaCl.

염 내성 변이균주 Candida magnoliae M26에 의한 에리스리톨 발효특성 (Fermentation Characteristics of Salt-Tolerant Mutant, Candida magnoliae M26, for the Production of Erythritol)

  • 이강희;서진호;유연우
    • KSBB Journal
    • /
    • 제17권6호
    • /
    • pp.509-514
    • /
    • 2002
  • 발효조건의 최적화에 대한 연구결과 온도는 28$^{\circ}C$, 배지의 초기 pH는 7.0, 통기와 교반 조건은 1.0 vvm과 500 rpm에서 erythritol의 생산이 가장 우수하였다. 이러한 최적의 발효조건에서 250 g/L의 glucose와 5 g/L의 yeast extract가 포함된 발효배지에서 최대 erythritol 농도는 143.3 g/L이었으며, 이때의 수율은 57%이고 생산성은 0.70 g/L-h이었다. 발효 중에 pH를 일정하게 조절하는 경우에 erythritol의 수율 및 생산성은 향상되지 못하였다. 발효배지에 0.5 M의 NaCl 또는 KCl의 첨가에 의해서 염이 첨가되지 않은 배지에 비해 erythritol의 생산이 약간 증가를 하였다. 그러나 NaCl 또는 KCl의 첨가농도가 증가할 수록 erythritol의 생성은 감소하고, 반면에 glycerol의 생성이 증가하였다.

Investigation of Al-Ni Alloys Deposition during Over-discharge Reaction of Na-NiCl2 Battery

  • Kim, Jeongsoo;Jo, Seung Hwan;Park, Dae-In;Bhavaraju, Sai;Kang, Sang Ook
    • 전기화학회지
    • /
    • 제19권3호
    • /
    • pp.57-62
    • /
    • 2016
  • The over-discharging phenomena in sodium-nickel chloride batteries were investigated in relation to decomposition of molten salt electrolyte and consequent metal co-deposition. From XRD analysis, the material deposited on graphite cathode current collector was revealed to be by-product of molten salt electrolyte decomposition. In particular, the result showed that the Ni-Al alloys ($Al_3Ni_2$, $Ni_3Al$ and $Al_3Ni$) were electrochemically deposited on graphite current collectors in line with over-discharging behaviors. It is assumed that the $NiCl_2$ solubility in molten salt electrolytes leads to the co-deposition of Ni-Al alloys by increasing metal deposition potential above 1.6 V (vs. $Na/Na^+$). The cell tests have revealed that the composition of molten salt electrolytes modified by various additives makes a decisive influence on the over-discharging behaviors of the cells. It was revealed that NaOCN addition to molten salt electrolytes was advantageous to suppress over-discharge reactions by modifying the characteristics of molten salt electrolytes. NaOCN addition into molten salt electrolytes seems to suppress Ni solubility by maintaining basic melts. The cell using modified molten salt electrolyte with NaOCN (Cell D) showed relatively less cell degradation compared with other cells for long cycles.