• Title/Summary/Keyword: NaCl electrolyte

Search Result 234, Processing Time 0.024 seconds

Changes in metabolic rate and hematological parameters of black rockfish (Sebastes schlegeli) in relation to temperature and hypoxia (수온과 저산소에 따른 조피볼락(Sebastes schlegeli)의 호흡대사와 혈액성상의 변화)

  • Kim, Heung-Yun
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.213-224
    • /
    • 2021
  • Experiments were performed to investigate changes in metabolic rate (MO2), critical oxygen saturation (Scrit) and hematological parameters of black rockfish, Sebastes schlegeli exposed to hypoxia at 15, 20 and 25℃. The MO2 was measured at an interval of 10 min using intermittent-flow respirometry. The normoxic standard metabolic rate (SMR) was 116.5±5.5, 188.6±4.2 and 237.4±6.8 mg O2/kg/hr, and Scrit was 22.1±1.2, 30.6±1.5 and 41.9±1.4% air saturation at 15, 20 and 25℃, respectively. Q10 values were 2.62 between 15 and 20℃, 1.58 between 20 and 25℃, and 2.04 over the full temperature range. In the investigation of blood (hematocrit and hemoglobin) and biochemical parameters (plasma cortisol, glucose, electrolyte and osmolality), the rockfish were subjected to Scrit for each temperature during 4 hr. All of hematological parameters of the rockfish exposed to hypoxic water were significantly higher than those of normoxic control. Moreover, blood and biochemical parameters of the rockfish maintained to normoxic water showed the tendency of increase with temperature, and were significantly higher at 25C. As a result of this experiment, it was found that physiological stress due to hypoxia increased at high temperature.

Optimum dimensionally stable anode with volatilization and electrochemical advanced oxidation for volatile organic compounds treatment (전극의 부반응 기포발생에 따른 휘발특성과 전기화학고도산화능을 동시에 고려한 휘발성 유기화합물 처리용 최적 불용성전극 개발)

  • Cho, Wan-Cheol;Poo, Kyung-Min;Lee, Ji-Eun;Kim, Tae-Nam;Chae, Kyu-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, $IrO_2/Ti$, $IrO_2/Ti$, and $IrO_2-Ru-Pd/Ti$. EAOP was operated under same current density ($25mA/cm^2$) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the $IrO_2-Ru/Ti$ anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by $IrO_2-Ru/Ti$, 90.2% by $IrO_2-Ru-Pd/Ti$, 78% by $IrO_2/Ti$, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the $IrO_2-Ru/Ti$ anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.

DENTAL TREATMENT OF A PATIENT WITH BARTTER SYNDROME: CASE REPORT (Bartter 증후군 환아의 치아우식 치료: 증례보고)

  • Kim, Minji;Song, Ji-Soo;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Jang, Ki-Taeg
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.15 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Bartter syndrome is an inherited renal tubular disorder characterized by hypokalemia, hypochloremic metabolic alkalosis, hyperreninemia, hyperprostaglandinism, and normal blood pressure. Bartter syndrome is classified by neonatal and classic type. Clinical manifestation of Bartter syndrome considered in dental treatment include tendency to dehydration, vomiting and erosion, attrition and abrasion of the teeth. A 2-year-4 month old boy with Bartter syndrome type III was referred to the Seoul National University Dental Hospital for dental evaluation and treatment. He showed hypokalemic hypochloremic metabolic alkalosis and had been treated with indomethacin and potassium chloride. He had hypocalcified teeth with or without multisurface caries lesions in all dentition and the erosion of maxillary teeth was detected. Dental procedure under general anesthesia was scheduled due to multiple caries and his medical condition. The dental procedure was successfully performed. This case suggests that electrolyte imbalances need to be treated prior to dental treatment and complete coverage restoration is necessary to protect the eroded teeth. An appropriate management plan for the patients with Bartter syndrome should include considerations of the need for close interaction with the pediatrician for pre- and post-operative care. General anesthesia may be recommendable to manage the patients having multiple caries with Bartter syndrome.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.