• Title/Summary/Keyword: NaCl Concentration

Search Result 1,591, Processing Time 0.032 seconds

The Effect of Rapidly Rotating Shift work on the Fatigue Level, Urinary 17-KS, $Na^+$ and $Cl^-$ Excretion (빠른 교대근무가 피로도, 요중 17-KS, $Na^+,\;Cl^-$ 배설에 미치는 영향)

  • Jung, Young-Ju
    • Journal of Korean Biological Nursing Science
    • /
    • v.1 no.1
    • /
    • pp.100-114
    • /
    • 1999
  • This study was done to investigate the effects of rapidly-rotating shift work of two-day interval on fatigue level and the concentration of urinary 17-KS, $Na^+,\;Cl^-$. The subjects were 20 nursing college students(control group) and 15 nurses in a university hospital and the study was done from Apr. 21 to May 4th, 1999. In the test group, each 5 nurses were allocated to day shift(8 AM-4 PM), evening shift(4 PM-12 MN) and night shift(12 MN-8 AM) respectively. The fatigue level were measured 30 minutes after work start on the 2nd day of work shift. Urine specimens were collected at 8 AM, 4 PM and 12 MN on the 2nd day of work shift in the control group and 30 minutes before and after work on the 2nd day of work shift in the test group. The data were analyzed with SPSS(for Window, ver 7.5). Statistical analysis was performed by using t-test, paired t-test and ANOVA. The results were as follows. 1. The perceived fatigue level in shift work 1) The physical and mental fatigue level were significantly higher in night shift than that in day or evening shift(p<0.05). In the neuro-sensory fatigue level, night shift showed higher tendency than that in day or evening shift, but there were no significant differences between each shifts. 2) Comparison between the control group and the test group: Physical fatigue level was significantly higher in night shift than that in day or evening shift of the control group(P<.001). Mental fatigue level was significantly higher in day or night shift than that in evening shift of the control group(P<.05). In the neuro-sensory fatigue level, test group showed higher tendency than that in the control group, but there were no significant differences between two groups. 3) The total fatigue level was higher in night shift than that in day shift or evening shift(P<.05). In comparing with the control group, night shift and day shift showed higher total fatigue level than that in the control group(p<0.05). 2. The concentration of urinary 17-KS, $Na^+$ and $Cl^-$ In the control group, urinary 17-KS, $Na^+$ and $Cl^-$ showed higher level in afternoon that in morning and night. In the test group, cr in day and evening shift and $Na^+$ in evening shift showed higher level at the end of work. The 17-KS concentration at the begining and the end of work in three shift groups were lower than those in control group(p<0.05), however, $Cl^-$ concentration at the begining of work in day shift, and the end of work in day and evening shift were higher than those in control group(p<0.05). $Cl^-$ concentration at the begining and end of work in night shift were considerably higher than those in control group repectively(p<0.1, p<001). $Na^+$ concentration showed a higher tendency in three shift groups except at the begining of work in night shift, but there were no statistical difference. In comparing concentration of the 17-KS, $Na^+$ and $Cl^-$ among the shift groups, 17-KS concentration showed a lower tendency and $Na^+,\;Cl^-$ showed a higher tendency in night shift: The result of this study showes that biorhythm of shift work nurse was irregular. Fatigue level as the subjective index for evaluating the health problem concerning shift work was higher in night shift and proved to be in accordance with the concentration of urinary 17-KS, $Na^+$ and $Cl^-$ used as objective indices. Disturbation of biorhythm and work stress due to night shift seems to cause the health problem of nurses and decrease of work efficiency. It is considered that work regualtion is necessary for the rational management of the nursing administration.

  • PDF

Growth Characteristics and Photosynthesis of Soybean Seedling to NaCl stress in Sand Culture (콩의 유묘기에 있어서 NaCl Stress에 의한 생육특성과 광합성 반응)

  • Cho, Jin-Woong;Kim, Choong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.361-365
    • /
    • 1999
  • This atudy was conducted to determine the growth characteristics and photosynthesis of soybean (Glycine max L. cv. Keumjongkongl) 30 day old seedling to 100mM NaCl concentration containing 1/2 Hoagland`s nutrient solution in sand culture. The nodule formation of root is not found perfectly with NaCl stress. The leaf dry matter weight (g/plant) of stressed plant is more reduction in 77% to control than any other characters. The water content (%) is tend to increase but water potential (MPa) is tend to decrease at NaCl stress. The chlorophyll content (SPAD) is tend to increase at growing leaf age of control but decrease at NaCl stress. The photosynthesis, stomatal conductance and transpiration are tend to decrease sharply at NaCl stress.

  • PDF

Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation

  • Kim, Byung Soo;Kim, Ji Yeon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.48-56
    • /
    • 2020
  • This study aimed to optimize the culture conditions to improve the crude biosurfactant activity of Bacillus pumilus IJ-1, using a 33 full-factorial design of response surface methodology (RSM). It was found that submerged fermentation of B. pumilus improved the activity of the crude biosurfactant. The factors selected for optimization were NaCl concentration, temperature, and tryptone concentration. Response surface analysis revealed that the fitted quadratic model was statistically significant and produced an adequate R2 value (0.9898) and a low probability value (<0.0001). The optimum level for each factor was found to be 0.567% (w/v) NaCl, 21.851℃ and 0.765% (w/v) tryptone, respectively. Crude biosurfactant activity was found to be most affected by tryptone concentration; then temperature, and finally NaCl concentration. Our results may potentially facilitate large-scale biosurfactant production from B. pumilus IJ-1.

Transport Characteristics of Organic Anions through Poly (1-methyl-4vinylpyridium iodide-co-styrene) Membrane (Poly(1-methyl-4-vinylpyridium iodide-co-styrene)막을 통한 유기음이온의 투과특성)

  • 이광재;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.207-213
    • /
    • 1991
  • In this study poly (1-methyl-4-vinylpyridinium iodide-co-styrene) membrane with pyridinium cation as a fixed carrier was synthesized and the transport characteristics of the membrane was examined over various factors. As the concentration of the fixed carrier in the membrane was increased, the water content was increased. Meanwhile, the counter current of the organic anion and the chloride ion, the following results were obtained. Initial flux of Cl-, organic anion and Na+ decreased with the increasing thickness of membrane, and as the concentration of the fixed carrier increases, the initial flux of Cl- and organic anion increase but the initial flux of Na+ decreased. The flux equation of the organic anion, CCl3COO- was obtained from saturation kinetics as follows;$V_{o}=\frac{(8.67{\times}10^{-5}){\cdot}[NaCl]}{9.63{\times}10^{-2}+[NaCl]} mol/cm^2h$

  • PDF

Effects of NaCl Concentrations on Production and Yields of Fruiting Body of Oyster Mushrooms, Pleurotus spp. (NaCl의 농도가 느타리버섯 자실체 발생 및 수량에 미치는 영향)

  • Jhune, Chang-Sung;Sul, Hwa-Jin;Kong, Won-Sik;Yoo, Young-Bok;Cheong, Jong-Chun;Chun, Se-Chul
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2006
  • This studies investigated the effect of concentrations of sodium chloride (NaCl) on occurrence and growth of fruitbody in oyster mushrooms, Pleurotus spp. Our experiments divided into two parts. When the water contents in substrate were added with sodium chloride solution in cotton waste box cultivation as a first experiment, the growth of mushroom was damaged as the concentration was increased, even though there was a little difference according to the strains. The yield in 1.0% NaCl solution was decreased to 72% compared to non-treated plot while that in 3.0% solution was only 2% of the non-treated plot. Morphological characteristics of mushrooms cultivated in substrate with the different concentration of the solution showed different results. For example, the size and thickness of pilei were not influenced by NaCl concentration, but the length of stipes and individual weight were much influenced. In plastic box cultivation filled with cotton waste, watering treatment with the different concentrations of sodium chloride solution, the second experiment, did not show any difference according to the concentration until 1.0% solution but there was a little difference according to the strains. The productivity of fruitbody started to decrease at 2.0% of the solution and the yield and quality of mushroom in 3.0% solution treatment were generally low. After the second flush, days for mushroom sprouting were generally prolonged in proportion to the solution concentration. Taken altogether, the second experiment did not show a clear effect as the case of the first experiment.

Determination of Inorganic Elements in Women Blood Serum using Instrumental Neutron Activation Analysis (중성자방사화분석법을 이용한 성인여성 혈청중의 무기 원소 분석)

  • Moon, Jong-Hwa;Chung, Yong-Sam;Lee, Ok-Hee
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.509-513
    • /
    • 2002
  • In this study, instrumental neutron activation analysis was used to assess the concentration level of inorganic trace elements in Korean women blood serum. It was found out that high concentration of Na and Cl incurs analytical interference, but 12 elements of Br, Ca, Cl, Co, Cr, Cs, Fe, K, Na, Rb, Se, Zn can be determined under the condition of interference minimization. Serum samples collected from 63 women were analyzed and the concentration level and range of the elements were evaluated. NIST SRMs were analyzed simultaneously for analytical quality control. The average values of Na and Cl determined in serum samples are around 3000 mg/L, Ca is 100 mg/L and K is 200 mg/L. Besides, Br, Se and Zn have concentration level of 6.0, 0.1 and 1.0 mg/L, respectively. It was found that there is no significant difference between the present values and reported values.

Sensitivity of a charge-detecting label-free DNA sensor using field-effect transistors (FETs) depending on the Debye length (전계효과 트랜지스터(FETs)를 이용한 전하 검출형 DNA 센서에서 Debye length에 따른 검출 감도)

  • Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.86-90
    • /
    • 2011
  • The effects of cations are very important in field-effect transistors (FETs) type DNA sensors detecting the intrinsic negative charge between single-stranded DNA and double-stranded DNA without labeling, because the intrinsic negative charge of DNA is neutralized by cations in electrolyte solution. We consider the Debye length, which depends on the concentration of cations in solution, to detect DNA hybridization based on the intrinsic negative charge of DNA. The Debye length is longer in buffer solution with a lower concentration of NaCl and the intrinsic negative charge of DNA is more effective on the channel surface in longer Debye length solution. The shifts in the gate voltage by DNA hybridization with complementary target DNA are 21 mV in 1 mM NaCl buffer solution, 7.2 mV in 10 mM NaCl buffer solution, and 5.1 mV in 100 mM NaCl buffer solution. The sensitivity of FETs to detect DNA hybridization based on charge detection without labeling depends on the Debye length.

Spectrophotometric Determination of Traces of Boron in Semiconductor-grade Trichlorosilane (반도체급 삼염화실란중의 극미량 붕소의 분광 광도법적 측정)

  • Dong Kwon Kim;Hee Young Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.534-538
    • /
    • 1991
  • A procedure for spectrophotometric determination of traces of boron in high-purity trichlorosilane (TCS) is proposed utilizing an adsorptive separation. NaCl is chosen as an Lewis base adsorbent which forms a complex with boron compounds in TCS, and is well dissolved in sulfuric acid-quinalizarin color-forming agent without causing an interference in colorimetric measurements. The proposed adsorptive separation method is free from the formation of silica gel and gas bubbles during the analysis of TCS. The method reveals that the boron concentration in a semiconductor grade TCS is 6.1 ${\mu}$g/l within the standard deviation of ${\pm}$20%. On the other hand, the boron concentration of the purified TCS which is separated from NaCl-boron compounds complex is reduced to 0.2 ${\mu}$g/l, showing the efficient applicability of NaCl to the adsorptive separation. The effectiveness of NaCl for the removal of boron in TCS purification is also described in comparison with other well-known adsorbents.

  • PDF

Influence of NaCl and pH on Hydrolysis of Chicken Myofibrillar Proteins by Leukocyte Lysosomal Proteinases (Leucocyte lysosomal proteinase에 의한 닭의 근섬유(筋纖維) 단백질(蛋白質) 분해(分解)에 미치는 NaCl과 pH의 영향(影響))

  • Shinlee, Seung-Yee;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.569-574
    • /
    • 1990
  • The influence of NaCl and pH on degradation of chicken breast muscle myofibrillar proteins by porcine leukocyte lysosomal proteinases was investigated. The degradation reactions were carried out at $38^{\circ}C$ for 24hours under different conditions. The degradation of myofibrillar proteins by leukocyte lysosomal enzymes at various pH values was limited to partial hydrolysis. Reactions at higher pH values resulted in lower molecular weight degradation products while reactions at lower pH resulted in higher molecular weight degradation products. When NaCl was added into the reaction mixture, enzyme activities of degradation were increased at all pH values studied, as evidenced by NPN-analysis and SDS-PAGE. More severe degradation was observed with higher salt concentration. The concentration of 0.5M NaCl in the reaction mixture gave more degradation of myosin heavy chain by enzyme than that of 0.1M NaCl.

  • PDF

Separation performances of a nanofiltration membrane for chlorides, nitrates and sulfates aqueous solutions

  • Wang, Da-Xin;Su, Meng;Wang, Xiao-Lin
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.155-160
    • /
    • 2004
  • Permeation experiments of a commercial nanofiltration membrane (nominated as ESNA 1) were carried out with aqueous solutions of various single salts, that is, five chlorides (NH$_4$Cl, NaCl, KCl, MgCl$_2$ and $CaCl_2$), three nitrates $(NaNo_3,\;Mg(No_3)_2\;and\;Ca(NO_3)_2)\;and\;three\;sulfates\;((NH_4)_2SO_4,\;Na_2SO_4\;and\;MgSO_4)$. The experimental results showed that (1) the permeate volume flux of the ESNA 1 membrane increased and decreased with the growth of the applied pressure and the feed concentration of salts, respectively. The real rejection of ESNA 1 membrane to most single salts increased with the growth of the permeate volume flux. (2) The reflection coefficients of ESNA 1 membrane to chlorides, nitrates and sulfates are 0.97, 0.96 and 0.99, respectively. The solute permeability of most salts except for magnesium and calcium salts increased with the growth of feed concentration. (3) The sequence of the rejections of ESNA 1 membrane to anions is $R({SO_4}^{2-})>R(CI)>R(NO_3)$ at the same feed concentration. While the sequence of the rejections to cations is cataloged into two cases: $R(Na^+)>R(K^+)>R(Mg^{2+})>R(Ca^{2+})$ at the concentration of 10 mol/$m^3$ and $R(Mg^{2+})>R(Ca^{2+})>R(Na^+)>R(K^+)$ at the concentration of 100 mol/$m^3$. The separation capability of a NF membrane is usually affected by the electrostatic effect and the steric-hindrance effect. In this case, the electrostatic effect is the major factor at low concentration and the steric-hindrance effect is the major factor at high concentration. Both the specific sorption and the hydration also reasonably influenced the separation performance of NF membrane to salts.

  • PDF