• Title/Summary/Keyword: Na molten salt battery

Search Result 5, Processing Time 0.018 seconds

Investigation of Al-Ni Alloys Deposition during Over-discharge Reaction of Na-NiCl2 Battery

  • Kim, Jeongsoo;Jo, Seung Hwan;Park, Dae-In;Bhavaraju, Sai;Kang, Sang Ook
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2016
  • The over-discharging phenomena in sodium-nickel chloride batteries were investigated in relation to decomposition of molten salt electrolyte and consequent metal co-deposition. From XRD analysis, the material deposited on graphite cathode current collector was revealed to be by-product of molten salt electrolyte decomposition. In particular, the result showed that the Ni-Al alloys ($Al_3Ni_2$, $Ni_3Al$ and $Al_3Ni$) were electrochemically deposited on graphite current collectors in line with over-discharging behaviors. It is assumed that the $NiCl_2$ solubility in molten salt electrolytes leads to the co-deposition of Ni-Al alloys by increasing metal deposition potential above 1.6 V (vs. $Na/Na^+$). The cell tests have revealed that the composition of molten salt electrolytes modified by various additives makes a decisive influence on the over-discharging behaviors of the cells. It was revealed that NaOCN addition to molten salt electrolytes was advantageous to suppress over-discharge reactions by modifying the characteristics of molten salt electrolytes. NaOCN addition into molten salt electrolytes seems to suppress Ni solubility by maintaining basic melts. The cell using modified molten salt electrolyte with NaOCN (Cell D) showed relatively less cell degradation compared with other cells for long cycles.

Research Review of Sodium and Sodium Ion Battery (나트륨을 활용한 이차전지 연구동향)

  • Ryu, Cheol-Hwi;Kang, Seong-Gu;Kim, Jin-Bae;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.

Effect of Na2CO3 contents on synthesis of plate-like NaNbO3 particles for templated grain growth

  • Kim, Min-Soo;Lee, Sung-Chan;Kim, Sin-Woong;Jeong, Soon-Jong;Kim, In-Sung;Song, Jae-Sung;Soh, Jin-Joong;Byun, Woo-Bong
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.270-273
    • /
    • 2012
  • x mol% (x = 0 ~ 20) Na2CO3 excess Bi2.5Na3.5Nb5O18 (BNN) particles were synthesized using molten salt as a flux. The secondary phases were observed at stoichiometric ratio of BNN precursors and their intensity decreased with increasing Na contents. The results of SEM images showed that all particles existed in a platelet shape and the particle increased in size with higher increasing Na contents. Plate-like NaNbO3 particles were developed using BNN precursor obtained by a topochemical microcrystal conversion. XRD analysis of NaNbO3 particles showed that a single perovskite phase and the intensity of (h00) peaks increased with increasing Na contents in BNN precursor. SEM images showed that the size of plate-like NaNbO3 was significantly changed by controlling Na contents in BNN precursors.

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

Synthesis and Electrochemical Properties of Carbon Coated Mo6S8 using PVC (PVC를 원료로 탄소코팅한 Mo6S8의 합성 및 전기화학적 특성)

  • Si-Cheol Hyun;Byung-Won Cho;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.348-355
    • /
    • 2023
  • Magnesium secondary batteries are attracting much attention due to their potential to replace conventionally used lithium ion batteries. Magnesium secondary battery cathode material Mo6S8 were synthesized by molten salt synthesis method and PVC as a carbon materials were added to improve electrochemical properties. Crystal structure, size and surface of the synthesized anode materials were measured through XRD and SEM. Charge-discharge profiles and rate capabilities were measured by battery test system. 2.81 wt% PVC coated sample showed the best rate capabilities of 85.8 mAh/g at 0.125 C-rate, 69.2 mAh/g at 0.5 C-rate, and 60.5 mAh/g at 1 C-rate.