• 제목/요약/키워드: NWAs

검색결과 4건 처리시간 0.017초

Growth of Silicon Nanowire Arrays Based on Metal-Assisted Etching

  • Sihn, Donghee;Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제5권4호
    • /
    • pp.211-215
    • /
    • 2012
  • Single-crystalline silicon nanowire arrays (SiNWAs) using electroless metal-assisted etchings of p-type silicon were successfully fabricated. Ag nanoparticle deposition on silicon wafers in HF solution acted as a localized micro-electrochemical redox reaction process in which both anodic and cathodic process took place simultaneously at the silicon surface to give SiNWAs. The growth effect of SiNWs was investigated by changing of etching times. The morphologies of SiNWAs were obtained by SEM observation. Well-aligned nanowire arrays perpendicular to the surface of the silicon substrate were produced. Optical characteristics of SiNWs were measured by FT-IR spectroscopy and indicated that the surface of SiNWs are terminated with hydrogen. The thicknesses and lengths of SiNWs are typically 150-250 nm and 2 to 5 microns, respectively.

계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술 (Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources)

  • 박정민
    • 통합자연과학논문집
    • /
    • 제16권4호
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

FS-GaN을 열산화하여 제작된 Beta-Ga2O3 박막의 특성 (Properties of Beta-Ga2O3 Film from the Furnace Oxidation of Freestanding GaN)

  • 손호기;이영진;이미재;김진호;전대우;황종희;이혜용
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.427-431
    • /
    • 2017
  • In this paper, we discuss ${\beta}-Ga_2O_3$ thin films that have been grown on freestanding GaN (FS-GaN) using furnace oxidation. A GaN template was grown by horizontalhydride vapor phase epitaxy (HVPE), and FS-GaN was fabricated using the laser lift off (LLO) system. To obtain ${\beta}-Ga_2O_3$ thin film, FS-GaN was oxidized at $900{\sim}1,100^{\circ}C$. Surface and cross-section of prepared ${\beta}-Ga_2O_3$ thin films were observed by field emission scanning electron microscopy (FE-SEM). The single crystal FS-GaNs were changed to poly-crystal ${\beta}-Ga_2O_3$. The oxidized ${\beta}-Ga_2O_3$ thin film at $1,100^{\circ}C$ was peel off from FS-GaN. Next, oxidation of FS-GaNwas investigated for 0.5~12 hours with variation of the oxidation time. The thicknesses of ${\beta}-Ga_2O_3$ thin films were measured from 100 nm to 1,200 nm. Moreover, the 2-theta XRD result indicated that (-201), (-402), and (-603) peaks were confirmed. The intensity of peaks was increased with increased oxidation time. The ${\beta}-Ga_2O_3$ thin film was generated to oxidize FS-GaN.

분위기 열처리가 Ca-doped Y $CrO_3$의 전기적 특성에 미치는 영향 (Effects of Atmospheric Annealing on the Densification and Electrical properties of Ca-doped $CrO_3$)

  • 하우종;문종하;이병택;박현수
    • 한국재료학회지
    • /
    • 제10권8호
    • /
    • pp.540-544
    • /
    • 2000
  • 열처리가 분위기 Y(sub)0.7Ca(sub)0.3CrO(sub)3<원문참조>의 치밀화 및 전기적 특서에 미치는 영향을 조사하였다. 1700$^{\circ}C$ 공기중에서 12시간 소결된 시편을 1400$^{\circ}C$ O$_2$, Air, N$_2$에서 시간의 변화에 따라 재열처리하였다. N$_2$분위기에서 열처리한 Y(sub)0.7Ca(sub)0.3CrO(sub)3<원문참조>의 밀도는 열처리 시간이 증가함에 따라 다음과 같이 변화하였다. 4.5(0hr)\longrightarrow5.35(24hrs)\longrightarrow5.1g/$cm^3$(48hrs). 전기전도도는 열처리 시간이 증가함에 따라 큰변화는 없었으며, 활성화 에너지는 0.16eV로 일정하였다. Air에서 재열처리한 경우 밀도는 거의 변하지 않았으나, 활성화 에너지는 시간에 따라 0.19에서 0.115eV까지 변화하였다. O$_2$분위기에서 열철한 Y(sub)0.7Ca(sub)0.3CrO(sub)3<원문참조>의 밀도는 24시간 열처리후 4.9(g/$cm^3$)로 증가후 일정하였다. 24시간 이상 N 분위기에서 열처리한 경우와는 다르게 기지상과 비슷한 조성의 제 2상의 석출되었으며 24시간동안 열처리한 시편까지는 전기 전도도에 변화가 없었다. 그러나 48시간 동안 열처리된 시편의 전기 전도도는 감소하였고 활성화 에너지는 400K이하에서 0.167eV, 400K 이상에서 0.24eV이었다.

  • PDF