• Title/Summary/Keyword: NUTRIENT CONCENTRATION

Search Result 1,586, Processing Time 0.033 seconds

Elution Behavior of Nutrient Salts from Sediment and its Impact on Water Bodies

  • Wada, Keiko;Haruki, Fumio;Ishita, Kyoji;Okada, Yuki
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • This paper describes the influence of nutrient salts eluted from the bottom of a closed water area where polluted sediment has been deposited by inflowing river water. The elution pattern was monitored at our experimental facility. Both the sediment pore water and water above the bottom were sampled using a dialyzer sampler (peeper). The pore water of the eutrophicated sediment contained a large amount of nutrient salts, and the effect of elution was confined to a limited area of the bottom surface. The nutrient concentration of the sediment pore water was closely related to both the water temperature and dissolved oxygen (DO) concentration. The eluted nutrients from the sediment provided a source for phytoplankton and algae growth. This experimental data indicated that the water quality of the surface was not directly connected to the eluted nutrient salts, while it was indirectly affected by the total ecosystem, including all the organisms within an area and their environment.

Changes in the Nutrient Components Associated with the Growth of Lettuce in Circulating Hydroponics (순환식 양액재배에서 상추의 성장에 따른 양액성분의 변화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1075-1084
    • /
    • 2015
  • This study was conducted to investigated the changes in the nutrient components ($NO_3{^-}-N$, $NH_4{^+}-N$, $PO_4{^{3-}}P$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) and environmental parameters (electrical conductivity, total dissolved solids and pH) on the leaf lettuce (Lactuca sativa L.) grown with hydroponics. Recirculating hydroponic cultivation system was consisted of planting port, LED lamp, water tank, and circulating pump for hydroponic. Nutrient solution was used in the standard solution for Japan vegetables experimental station and commercial hydroponic. The result showed that electrical conductivity (EC), total dissolved solids (TDS) and pH, depending on the growth of lettuce decreased continuously. With the growth of the lettuce, nitrate nitrogen, ammonia nitrogen, phosphate phosphorus were required for periodic replacement. The number of pH compensation due to the growth of lettuce are the most high. The concentration of $Ca^{2+}$ and $Mg^{2+}$ during the lettuce growth showed no significant change. However, $K^+$ concentration increased due to the replacement with nitrogen and phosphorus. Electric conductivity and total dissolved solids with total nutrient concentration showed the linear relationship and the correlation coefficient $R^2$ were 0.8601 and the 0.827, respectively.

Nutrient Distribution of Culm, Branches and Leaf in Phyllostachys bambusoides and Phyllostachys nigra var. nenosis (왕대와 솜대의 줄기, 가지, 잎에 양분 분포)

  • Park, Seong-Wan;Baek, Gyeongwon;Cho, Hyun-Seo;Yoo, Byung Oh;Jung, Su Young;Lee, Kwang Soo;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.388-396
    • /
    • 2017
  • This study was carried out to determine effects of bamboo species on the distribution of nutrients in aboveground biomass of Phyllostachys bambusoides and Phyllostachys nigra var. nenosis, Damyanggun, Korea. The study site was established around 40-year-ago to produce bamboo culm and edible shoot production. Total 28 bamboos (14 P. bambusoides and 14 P. nigra var. nenosis) were cut to measure nutrient concentration of each bamboo component, such as culm, branches and leaf. Magnesium concentration in each bamboo component was significantly higher in the P. bambusoides than in the P. nigra var. nenosis. Nutrient concentrations except for calcium were significantly higher in the current-year-old bamboos than in the > 1-year-old bamboos. The nutrient concentration in leaf was generally highest in carbon, followed by potassium or nitrogen, phosphorus, calcium or magnesium. Total nutrient content in each bamboo component was significantly higher in the P. bambusoides than in the P. nigra var. nenosis. The nutrient content of bamboo biomass was the highest in carbon, followed by potassium, nitrogen, phosphorus, magnesium and calcium. The results indicate that P. bambusoides uptakes more nutrients compared with P. nigra var. nenosis during growth development.

Growth, Nutrient Status and Net Photosynthetic Rate of Pinus densiflora Seedlings in Various Levels of Aluminum Concentrations (알루미늄 농도(濃度)에 따른 소나무 묘목(苗木)의 생장(生長), 영양상태(營養狀態) 및 광합성속도(光合成速度)에 미치는 영향(影響))

  • Lee, Choong Hwa;Jin, Hyun O;Izuta, Takeshi
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.249-254
    • /
    • 1999
  • The effects of various levels of Al concentration on growth, nutrient status and net photosynthetic rate of 2-year-old Pinus densiflora Sieb. et Zucc. seedlings grown in a nutrient culture solution were investigated. Al concentrations were added as aluminum chloride($AlCl_3$) at 0(control), 10, 30 and 60ppm to the nutrient culture solution. The nutrient culture solution was maintained at pH 4.0 by adding HCl or NaOH solution. The seedlings were transplanted into the nutrient culture solution and grown in a greenhouse for 90 days from May 8 to August 6, 1996. The treatment above 10ppm of Al concentrations induced a significant reduction on the dry weight growth of the seedlings. The relative growth rate(RGR), net assimilation rate(NAR) and net photosynthetic rate of the seedlings were reduced with increasing of Al concentrations in the nutrient culture solutions. This result suggests that reductions in the RGR and NAR of the seedlings were mainly due to the inhibition of net photosynthesis. In addition, the increase of Al concentrations in a nutrient culture solution decreased the concentration of essential mineral elements such as Ca and Mg in the needle of the seedlings. However, the concentrations of Al of each plant organ increased in the treatment above 10ppm of Al concentrations in the nutrient culture solutions. This result suggests that the increased Al concentration in the belowground part resulted from the decreased concentration of essential mineral elements in the aboveground part of the seedlings.

  • PDF

Preliminary Assessment of Human Inpacts on Water Qualities (Nutrient Concentration) of the Han River on the Korean Peninsula, Based on a Mathematical Model (數學 model 에 依한 漢江의 水質 ( 영양소농도 ) 에 미치는 人間의 影響에 關한 豫察)

  • Nakane, Kaneyuki;Mitsuo MItsudera;Yang-Jai Yim;Sa-Uk Hong
    • The Korean Journal of Ecology
    • /
    • v.7 no.3
    • /
    • pp.109-118
    • /
    • 1983
  • Near future dynamics of water qualities (nutrient concentration) of the Han River was predicted, based on a mathematical model representing the relationship between the nutrient concentration in th river wagter and environmental factors (population density, land-use types, rock compositions and nutrient accumulation) in the basin. The population density and land-use types were forecasted to change distinctly in the downstream area, especially in Seoul City area in 1985~1990 whereas any environmental factor was not expected to change its level significantly in both upstream and middle reaches areas. It was indicated by the model that the nutrients concentration in the up- and mid-streams would keep its level in future as it was, but it would increase drastially in the downstream area. For the preservation of the water qualities in the downstream at least to keep its level as it was in 1980, practical countermeasures were proposed, based on the assessment of the contribution of each environmental factor to the water qualities.

  • PDF

The Decomposition of Leaf Litters of Some Tree Species in Temperate Deciduous Forest in Korea II. Changes in Nutrient Content During Litter Decomposition

  • Yang, Keum-Chul;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.313-319
    • /
    • 2003
  • Dry weight loss and nutrient release from leaf litter for six tree species were studied using litter bag methods. The litter bags were incubated for f6 months on the forest floor in temperate deciduous forest in Mt. Cheonma, located at the middle part of Korean Peninsula. The changes in nutrient content and the rate of dry weight loss in leaf litter varied with litter types. The litter of Pinus densiflora showed the lowest rate of mass loss (k=0.33), nitrogen concentration (0.89%) and ash concentration (2.50%), while showed the highest C/N ratio (63.40). On the other hand, the litter of Acer pseudo-sieboldianum showed the fastest rate of mass loss (k=0.82), the highest nitrogen concentration (1.11%), and the lowest C/N ratio (49.40). During the decomposition, nitrogen, phosphorus and calcium in the leaf litters showed relatively slow decreasing pattern compared to other elements (carbon, potassium, magnesium, manganese and sodium), but potassium and sodium decreased at early stage of the decomposition for all leaf litters. Differences in annual decomposition rates of litter among species were consistent with the particular chemical characteristics of their leaf litters. The initial concentration of nitrogen was positively correlated with litter decomposition rate for six species, while litter decomposition rate of six species was negatively correlated with C:N ratio of initial leaf litters.

Effects of Nutrient Solution Concentration and Substrate on the Growth of Common Thyme(Thymus vulgaris L.) (배지의 종류와 배양액농도가 백리향(Thymus vulgaris L.)의 생육에 미치는 영향)

  • 김예희;이문정;박권우
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.90-98
    • /
    • 1999
  • This study was conducted to select proper substrate and nutrient solution concentration for favorable growth and quality in common thyme (Thymus vulgaris L.). The growth of common thyme was better in deep flow culture (DFT) than in other substrate cultures. As the nutrient solution concentration rose, the ratio of dry matter increased, while the fresh weight and the number of lateral shoots decreased. The contents of total chlorophyll and vitamin C were higher in DFT than others. Ca, K, P were showed high contents in cocopeat, but Mg content was the highest at half-fold concentration in DFT. Common thyme showed low content of nitrate in DFT compared with that in other substrate culture. DFT was the most effective system for pronoting growth and quality of common thyme. The optimal concentration of nutrient solution in common thyme was half-fold(EC=1.2mS/cm) of herbs nutrient solution by European Vegetable R&D Center.

  • PDF

Effects of Substrate and Nutrient Solution Concentration on Growth and Essential Oil Content of Sweet Basil (Ocimum basilicum) (Sweet basil(Ocimum basilicum)의 생장과 정유함량에 미치는 배지 종류와 배양액 농도의 영향)

  • Baeck, Hae-Won;Park, Kuen-Woo
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2001
  • This experiment was conducted to find out optimum substrate and concentration of nutrient solution for mass production of sweet basil by pot culture. Growth depending on concentration of nutrient solution was different to some extent; the growth of plants was usually better in one-fold and two-fold concentration of nutrient solution but three-fold one was poor. Plants grown in cocopeat showed better growth, but peatmoss gave an adverse effect. Sweet basil grown in substrate mixed with cocopeat and perlite (1:1, v:v) was highest in essential oil content. After all, cultural practice by one-fold concentration of herb nutrient solution in substrate mixed with cocopeat and perlite (1:1, v:v) was recommended for better growth and higher essential oil content of sweet basil.

  • PDF

Nutrient composition and in vitro fermentability of corn grain and stover harvested at different periods in Goesan, a mountainous area

  • Nogoy, Kim Margarette;Zhang, Yan;Lee, Ye Hyun;Li, Xiang Zi;Seong, Hyun A;Choi, Seong Ho
    • Journal of Animal Science and Technology
    • /
    • v.61 no.1
    • /
    • pp.18-27
    • /
    • 2019
  • With South Korea's limited capability of feed production because of its relatively small cultivable area, the country is pushed to depend on foreign feed imports despite the immensely fluctuating price of corn. Hence, intensive efforts to increase the total cultivable area in Korea like extending of farming to mountainous area is being practiced. Corn was planted in Goesan County, a mountainous area in the country. Grain and stover were harvested separately in three harvest periods: early-harvest (Aug 8), mid-harvest (Aug 18), and late-harvest (Aug 28). The nutrient composition such as dry matter (DM), crude protein (CP), crude fat (EE), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and non-fibrous carbohydrates (NFC) was determined after harvest. Effective degradability (ED) of the major nutrients (DM, NDF, ADF, and CP) were measured through in vitro fermentation of rumen fluid from Hanwoo (Korean cattle). pH, ammonia-N concentration, volatile fatty acid (VFA) concentration, and gas production were periodically measured at 0, 3, 6, 12, 24, 48, and 72 h. Corn grain showed higher nutrient content and ED than stover. It also had higher gas production but its pH, ammonia-N, and total VFA concentration were lower than corn stover. The best nutrient composition of corn grain was observed in early-harvest (high CP, EE, NDF, OM, NFC, and low ADF). Early-harvest of corn grain also had high effective degradability of dry matter (EDDM), effective degradability of neutral detergent fiber (EDNDF), effective degradability of acid detergent fiber (EDADF), and total VFA concentration. On the other hand, the best nutrient composition of stover was observed in mid-harvest (high DM, CP, NDF, and low ADF). EDDM, EDNDF, and EDADF were pronounced in early-harvest and mid-harvest of stover but the latter showed high total VFA concentration. Hence, early and mid-harvested corn stover and grain in a mountainous area preserved their nutrients, which led to the effective degradation of major nutrients and high VFA production.

Characteristics of Nutrient Distribution by the Natural and Artificial Controlling Factors in Small Stream Estuary (소하천 하구(남해 당항포)에서 자연적, 인위적 요인이 영양염 분포에 미치는 영향)

  • KANG, SUNGCHAN;PARK, SOHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • This study was conducted to investigate the nutrient distribution and controlling factors in small stream estuaries. The seasonal variations of nutrient concentration (nitrate, ammonium and phosphate) were observed from 2010 to 2012 in the three streams located in Dang-hang (closed estuary: Go-seong, open estuary: Gu-man and Ma-am). The nutrient concentrations in Go-seong were significantly higher than other estuaries, because Go-seong is relatively large and has large nutrient load from the watershed. The dyke located at the estuary, also, caused the high nutrient concentration by reducing the dilution and increasing residence time. In all three streams, nitrate concentration was high at upstream and decreased toward the downstream, because high load of nutrient input were located at upstream. Dilution and biogeochemical removal toward the downstream also caused the trends. Especially, denitrification, a typical nitrogen removing process showed clear tendency of gradual decreasing from upstream to downstream. However, Ammonium and phosphate concentrations were high at upstream and decreased toward the downstream only when the nutrient loads from the rivers were high. Nutrient concentrations were low in summer and high in winter. Freshwater discharge in summer caused a decrease of the residence time and increase of the transport of nutrients to downstream and reduced the nutrient concentrations in the estuary. Nutrient removal by the biological production during high temperature periods also affected the low nutrient concentrations. Small stream estuaries showed distinct nutrient dynamics. It is necessary to understand these characteristics in order to properly manage the small stream estuary.