• 제목/요약/키워드: NURBS elements

검색결과 19건 처리시간 0.027초

트림 NURBS 곡면의 T-스플라인 유한요소해석 (T-spline FEA for Trimmed NURBS Surface)

  • 김현중;서유덕;윤성기
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.135-144
    • /
    • 2009
  • In this present work, spline FEA for the trimmed NURBS surface of the 2D linear elasticity problem is presented. The main benefit of the proposed method is that no additional efforts for modeling of trimmed NURBS surfaces are needed and the information of the trimming curves and trimmed surfaces exported from the CAD system can be directly used for analysis. For this, trimmed elements are searched by using NURBS projection scheme. The integration of the trimmed elements is performed by using the NURBS-enhanced integration scheme. The formulation of constructing stiffness matrix of trimmed elements is presented. In this formulation, the information of the trimming curve is used for calculating the Jacobian as well as for obtaining integration points. The robustness and effectiveness of the proposed method are investigated through various numerical examples.

NURBS 곡면에서 사각형 요소망의 자동생성 시스템 (Automatic Generation System for Quadrilateral Meshes on NURBS Surfaces)

  • 김형일;박장원;권기연;조윤원;채수원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.894-899
    • /
    • 2000
  • An automatic mesh generation system with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed.. In this paper, NURBS surface geometries in the IGES format have been used to represent model shape. NURBS surface is represented as parametric surface. So each surface could be mapped to a 2D parametric plane through the parametric domain. And then meshes with quadrilateral elements are constructed in this plane. Finally, the constructed meshes are mapped back to the original 3D surface through the parametric domain. In this paper, projection plane, quasi-expanded plane and parametric Plane are used as 2D mesh generation plane. For mapping 3D surface to parametric domain, Newton-Rhapson Method is employed. For unstructured mesh generation with quadrilateral elements on 2D plane, a domain decomposition algorithm using loop operators has been employed. Sample meshes are represented to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Quadrilateral Mesh Generation on Trimmed NURBS Surfaces

  • Chae, Soo-Won;Kwon, Ki-Youn
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.592-601
    • /
    • 2001
  • An automatic mesh generation scheme with unstructured quadrilateral elements on trimmed NURBS surfaces has been developed. In this paper NURBS surface geometries in the IGES format have been employed to represent geometric models. For unstructured mesh generation with quadrilateral elements, a domain decomposition algorithm employing loop operators has been modified. As for the surface meshing, an indirect 2D approach is proposed in which both quasi-expanded planes and projection planes are employed. Sampled meshes for complex models are presented to demonstrate the robustness of the algorithm.

  • PDF

기하학적으로 정확한 셀 유한요소와 NURBS기반의 Trimmed Surface 모델링과의 연동 (Integration of Geometrically Exact Shell Finite Element With Trimmed Surface Modeling base on the NURBS)

  • 최진복;노희열;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.794-801
    • /
    • 2006
  • The linkage framework of geometric modeling and analysis based on the NURBS technology is developed in this study. The NURBS surfaces are generated by interpolating the given set of data points or by extracting the necessary information to construct the NURBS surface from the IGES format file which is generated by the commercial CAD systems in the present study. Numerical examples shows the rate of displacement convergence according to the paramterization methods of the NURBS surface. NURBS can generate quadric surfaces in an exact manner. It is the one of the advantages of the NURBS. A trimmed NURBS surface that is often encountered in the modeling process of the CAD systems is also presented in the present study. The performance of the developed geometrically exact shell element integrated with the exact geometric representations by the NURBS equation is compared to those of the previous reported FE shell elements in the selected benchmark problems.

  • PDF

Combination of isogeometric analysis and extended finite element in linear crack analysis

  • Shojaee, S.;Ghelichi, M.;Izadpanah, E.
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.125-150
    • /
    • 2013
  • This paper intends to present an application of isogeometric analysis in crack problems. An isogeometric formula is developed based on NURBS basis functions - enriched and adopted via X-FEM enrichment functions. The proposed method which is represented by the combination of the two above-mentioned methods, first by using NURBS functions models the geometry exactly and then by defining level set function on domain, identifies available discontinuity in elements. Additional DOFs are allocated to elements containing the crack and X-FEM enrichment functions enrich approximate solution. Moreover, a subelement refinement technique is used to improve the accuracy of integration by the Gauss quadrature rule. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of the proposed method during calculation of crack parameters.

트림된 NURBS 곡면의 효율적인 삼각화 알고리즘 (An Efficient Triangulation Algorithm for Trimmed NURBS Surfaces)

  • 정재호;박준영
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.144-154
    • /
    • 2000
  • We propose an algorithm for obtaining a triangular approximation of a trimmed NLRBS surface. Triangular approximation is used in the pre-processing step of many applications such as RP(Rapid Prototyping), NC(Numerical Control) and FEA(Finite Element Analysis), etc. The algorithm minimizes the number of triangular elements within tolerance and generates a valid triangular mesh for STL file and NC tool path generation. In the algorithm, a subdivision method is used. Since a patch is a basic element of triangular mesh creation, boundary curves of a patch are divided into line segments and the division of curves is applied for the interior of the surface. That is, boundary curves are subdivided into line segments and two end points of each line segment are propagated to the interior of the surface. For the case of a trimmed surface, triangulation is carried out using a model space information. The algorithm is superior because the number of elements can be controlled as the curvature of the surface varies and it generates the triangular mesh in a trimmed region efficiently. To verify the efficiency, the algorithm was implemented and tested for several 3D objects bounded by NURBS surfaces.

  • PDF

격자 정방형화 방법을 이용한 박판 성형해석의 효율개선 (Efficiency enhancement of sheet metal forming analysis with a mesh regularization method)

  • 윤종헌;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.339-342
    • /
    • 2003
  • This paper newly proposes a mesh regularization method for the enhancement of the efficiency in sheet metal forming analysis. The regularization method searches for distorted elements with appropriate searching criteria and constructs patches including the elements to be modified. Each patch is then extended to a three-dimensional surface in order to obtain the information of the continuous coordinates. In constructing the surface enclosing each patch, NURBS(Non-Uniform Rational B-Spline) surface is employed to describe a three-dimensional free surface. On the basis of the constructed surface, each node is properly arranged to form unit elements as close as to a square. The analysis results with the proposed method are compared to the results from the direct forming analysis without mesh regularization in order to confirm the validity of the method.

  • PDF

격자 정방형화 방법을 이용한 박판 성형해석의 효율개선 (Efficiency Enhancement in Sheet Metal Forming Analysis with a Mesh Regularization Method)

  • 윤종헌;허훈
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.401-407
    • /
    • 2003
  • This paper newly proposes a mesh regularization method for the enhancement of the efficiency in sheet metal forming analysis. The regularization method searches for distorted elements with appropriate searching criteria and constructs patches including the elements to be modified. Each patch is then extended to a three-dimensional surface in order to obtain the information of the continuous coordinates. In constructing the surface enclosing each patch, NURBS(Non-Uniform Rational B-Spline) surface is employed to describe a three-dimensional free surface. On the basis of the constructed surface, each node is properly arranged to form unit elements as close as to a square. The state variables calculated from its original mesh geometry are mapped into the new mesh geometry for the next stage or incremental step of a forming analysis. The analysis results with the proposed method are compared to the results from the direct forming analysis without mesh regularization in order to confirm the validity of the method.

Sharp Shape를 유지하는 trimmed NURBS 곡면의 삼각화 방법 (Trimmed NURBS surface tessellation with sharp shape constraint)

  • 조두연;김인일;이규열;김태완
    • 한국게임학회 논문지
    • /
    • 제2권1호
    • /
    • pp.62-68
    • /
    • 2002
  • 본 연구에서는 기존의 곡면 삼각화 방법들이 많은 수의 삼각형 메쉬를 사용하면서도 정확하게 표현하기가 힘들었던, 날카로운 모서리를 가지는 곡면을 처리할 수 있는 trammed NURBS곡면 삼각화 방법을 제안, 구현하였다. 기존의 매개변수영역에서의 삼각화의 문제점인 3차원공간상의 삼각형 메쉬를 계산할 때의 왜곡현상을 해결하기 위해서 곡면의 펼친영역을 근사적으로 계산하여 삼각화 하는 방법을 사용했다. 곡선, 곡면의 날카로운 점과 모서리를 자동으로 인식하기 위해서 1차미분 연속조건을 이용하였고, 이를 제약조건으로 constraint Delaunay 삼각화방법을 사용하여 곡면의 날카로운 형상(sharp shape)을 유지하면서 삼각화를 수행할 수 있었다. 제안된 삼각화 방법은 기존의 삼각화 방법에 비하여 적은수의 삼각형 메쉬로 곡면의 날카로운 모서리를 보다 정확하게 표현 할 수 있는 장점을 가지고 있어서 삼각형의 개수에 따라 가시화 성능이 큰 영향을 받는 컴퓨터게임 같은 분야에 도움을 줄 수 있으리라 예상된다.

  • PDF

셸 구조물의 중간면에 대한 삼각형 셸 요소망의 자동생성 (Automatic Generation of Triangular Shell Element Meshes on Mid-Surface in Shell Structure)

  • 문연철;양현익
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.451-460
    • /
    • 2007
  • The surface of 3D shell structure is created by using NURBS and nodes for generating finite element mesh on the surface are created by using external node offset method. In so doing the shortest distance between nodes on the top and bottom surface is searched and then the coordinates of nodes are determined by calculating the mid point of them in the middle of top and bottom surface. Triangular elements are formed on mid surface, and the average aspect ratio of the generated triangular elements are over 0.9.