• Title/Summary/Keyword: NTFS File System

Search Result 23, Processing Time 0.024 seconds

A Digital Forensic Method for File Creation using Journal File of NTFS File System (NTFS 파일 시스템의 저널 파일을 이용한 파일 생성에 대한 디지털 포렌식 방법)

  • Kim, Tae Han;Cho, Gyu Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.107-118
    • /
    • 2010
  • This paper proposes a digital forensic method to a file creation transaction using a journal file($LogFile) on NTFS File System. The journal file contains lots of information which can help recovering the file system when system failure happens, so knowledge of the structure is very helpful for a forensic analysis. The structure of the journal file, however, is not officially opened. We find out the journal file structure with analyzing the structure of log records by using reverse engineering. We show the digital forensic procedure extracting information from the log records of a sample file created on a NTFS volume. The related log records are as follows: bitmap and segment allocation information of MFT entry, index entry allocation information, resident value update information($FILE_NAME, $STANDARD_INFORMATION, and INDEX_ALLOCATION attribute etc.).

Method for Finding Related Object File for a Computer Forensics in a Log Record of $LogFile of NTFS File System (NTFS 파일시스템의 $LogFile의 로그레코드에 연관된 컴퓨터 포렌식 대상 파일을 찾기 위한 방법)

  • Cho, Gyu-Sang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The NTFS journaling file($LogFile) is used to keep the file system clean in the event of a system crash or power failure. The operation on files leaves large amounts of information in the $LogFile. Despite the importance of a journal file as a forensic evidence repository, its structure is not well documented. The researchers used reverse engineering in order to gain a better understanding of the log record structures of address parts, and utilized the address for identifying object files to gain forensic information.

Performance Analysis of Block Allocation of File Systems on Linux Environment (리눅스 환경에서 파일 시스템들의 블록 할당 성능 분석)

  • Choi, Jin-oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.355-357
    • /
    • 2014
  • Linux environment that is commonly used at embedded systems, supports various file systems as Ext2, FAT, NTFS, ets. The file system that is equiped on the embedded system is mostly implemented on mini hard disk or flash memory. The types of the file system of the system make an effect on the performance of a application programs. The factors of file system performance on a same media are block allocation and block free time. On these factors, block free time is not so different according to the type of file systems. This thesis performs the performance benchmark of a Ext2, FAT and NTFS file systems about block allocation performance. As the result, it is discussed that what file system is better at which case.

  • PDF

A New NTFS Anti-Forensic Technique for NTFS Index Entry (새로운 NTFS 디렉토리 인덱스 안티포렌식 기법)

  • Cho, Gyu-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.327-337
    • /
    • 2015
  • This work provides new forensic techinque to a hide message on a directory index in Windows NTFS file system. Behavior characteristics of B-tree, which is apoted to manage an index entry, is utilized for hiding message in slack space of an index record. For hidden message not to be exposured, we use a disguised file in order not to be left in a file name attribute of a MFT entry. To understand of key idea of the proposed technique, we describe B-tree indexing method and the proposed of this work. We show the proposed technique is practical for anti-forensic usage with a real message hiding case using a developed software tool.

Timestamp Analysis of Windows File Systems by File Manipulation Operations (파일 조작에 따른 파일 시간 변화 분석)

  • Bang, Je-Wan;Yoo, Byeong-Yeong;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.79-91
    • /
    • 2010
  • In digital forensics, the creation time, last modified time, and last accessed time of a file or folder are important factors that can indicate events that have affected a computer system. The form of the time information varies with the file system, depending on the user's actions such as copy, transfer, or network transport of files. Specific changes of the time information may be of considerable help in analyzing the user's actions in the computer system. This paper analyzes changes in the time information of files and folders for different operations of the NTFS and attempts to reconstruct the user's actions.

A Digital Forensic Analysis for Directory in Windows File System (Windows 파일시스템의 디렉토리에 대한 디지털 포렌식 분석)

  • Cho, Gyusang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.2
    • /
    • pp.73-90
    • /
    • 2015
  • When we apply file commands on files in a directory, the directory as well as the file suffer changes in timestamps of MFT entry. Based on understanding of these changes, this work provides a digital forensic analysis on the timestamp changes of the directory influenced by execution of file commands. NTFS utilizes B-tree indexing structure for managing efficient storage of a huge number of files and fast lookups, which changes an index tree of the directory index when files are operated by commands. From a digital forensic point of view, we try to understand behaviors of the B-tree indexes and are looking for traces of files to collect information. But it is not easy to analyze the directory index entry when the file commands are executed. And researches on a digital forensic about NTFS directory and B-tree indexing are comparatively rare. Focusing on the fact, we present, in this paper, directory timestamp changes after executing file commands including a creation, a copy, a deletion etc are analyzed and a method for finding forensic evidences of a deletion of directory containing files. With some cases, i.e. examples of file copy and file deletion command, analyses on the problem of timestamp changes of the directory are given and the problem of finding evidences of a deletion of directory containging files are shown.

Performance Analysis of Block Write Operation of File Systems on Linux Environment (리눅스 환경에서 파일 시스템들의 블록 쓰기 연산 성능 분석)

  • Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.136-140
    • /
    • 2015
  • Linux environment that is commonly used at embedded systems supports various file systems as Ext2, FAT, NTFS, etc. The file system that is equiped on the embedded system is mostly implemented on mini hard disk or flash memory. The types of the file system of the system make an effect on the performance of a application programs. The factors of file system performance on a same media are block read, block write and block free time. On these factors, block read and block free time are not so different according to the type of file systems. This paper evaluates the performance benchmark of file systems supported by linux about block allocation and write performance. The results obtained from various experiments shows the characteristics of each file system.

A Method of Data Hiding in a File System by Modifying Directory Information

  • Cho, Gyu-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.85-93
    • /
    • 2018
  • In this research, it is proposed that a method to hide data by modifying directory index entry information. It consists of two methods: a directory list hiding and a file contents hiding. The directory list hiding method is to avoid the list of files from appearing in the file explorer window or the command prompt window. By modifying the file names of several index entries to make them duplicated, if the duplicated files are deleted, then the only the original file is deleted, but the modified files are retained in the MFT entry intact. So, the fact that these files are hidden is not exposed. The file contents hiding is to allocate data to be hidden on an empty index record page that is not used. If many files are made in the directory, several 4KB index records are allocated. NTFS leaves the empty index records unchanged after deleting the files. By modifying the run-list of the index record with the cluster number of the file-to-hide, the contents of the file-to-hide are hidden in the index record. By applying the proposed method to the case of hiding two files, the file lists are not exposed in the file explorer and the command prompt window, and the contents of the file-to-hide are hidden in the empty index record. It is proved that the proposed method has effectiveness and validity.

An Arbitrary Disk Cluster Manipulating Method for Allocating Disk Fragmentation of Filesystem (파일시스템의 클러스터를 임의로 할당하여 디스크를 단편화하기 위한 방법)

  • Cho, Gyu-Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.11-25
    • /
    • 2020
  • This study proposes a method to manipulate fragmentation of disks by arbitrarily allocating and releasing the status of a disk cluster in the NTFS file system. This method allows experiments to be performed in several studies related to fragmentation problems on disk cluster. Typical applicable research examples include testing the performance of disk defragmentation tools according to the state of fragmentation, establishing an experimental environment for fragmented file carving methods for digital forensics, setting up cluster fragmentation for testing the robustness of data hiding methods within directory indexes, and testing the file system's disk allocation methods according to the various version of Windows. This method suggests how a single file occupies a cluster and presents an algorithm with a flowchart. It raises three tricky problems to solve the method, and we propose solutions to the problems. Experiments for allocating the disk cluster to be fragmented to the maximum extent possible, it then performs a disk defragmentation experiment to prove the proposed method is effective.

MFT-based Forensic Evidence File Search Method Using Direct Access to Physical Sector of Hard Disk Drive (하드디스크의 물리적 섹터 접근 방법을 이용한 MFT기반 증거 파일 탐색 기법)

  • Kim, Yo-Sik;Choi, Myeong-Ryeol;Chang, Tae-Joo;Ryou, Jae-Cheol
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • According to the capacity of hard disk drive is increasing day by day, the amount of data that forensic investigators should analyze is also increasing. This trend need tremendous time and effort in determining which files are important as evidence on computers. Using the file system APIs provided by Windows system is the easy way to identify those files. This method, however, requires a large amount of time as the number of files increase and changes the access time of files. Moreover, some files cannot be accessed due to the use of operating system. To resolve these problems, forensic analysis should be conducted by using the Master File Table (MFT). In this paper, We implement the file access program which interprets the MFT information in NTFS file system. We also extensibly compare the program with the previous method. Experimental results show that the presented program reduces the file access time then others. As a result, The file access method using MFT information is forensically sound and also alleviates the investigation time.

  • PDF