• Title/Summary/Keyword: NSM

Search Result 97, Processing Time 0.026 seconds

Bond Capacity of Near-Surface-Mounted CFRP Plate to Concrete Under Various Temperatures (콘크리트에 표면매입 보강된 탄소섬유 판의 온도에 따른 부착성능)

  • Seo, Soo-Yeon;Kim, Jeong-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • This paper presents a series of test result in order to study fire resistance capacity of the Near-Surface-Mounted (NSM) Carbon Fiber Reinforced Polymer (CFRP) plate, which are tensile test of CFRP under various temperature loading, temperature loading test of epoxy and bond test of NSM CFRP to concrete under various temperature loading. From the tests, it was found that NSM retrofit method had high efficiency in strengthening concrete under ordinary temperature. However, the strength of the system was able to be drastically decreased even a little increase of surrounding temperature. Especially, bond capacity begins to disappear when the surrounding temperature approaches the glass transition temperature of epoxy. Therefore, it is necessary to improve the fire resistance capacity of both fiber reinforced polymer reinforcement and epoxy for bonding in order to develop safe fire resistance design of structure.

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic;Emrah Madenci;Ahmed Badr;Walid Mansour;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.153-172
    • /
    • 2024
  • Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

Bond Strength of Near Surface-Mounted FRP Plate in Concrete Corresponding to Space and Bond Length (콘크리트에 표면매입 보강된 FRP판의 매입간격과 길이에 따른 부착강도)

  • Seo, Soo-Yeon;Kim, Min-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Recently, experimental and analytical researches have been performed in order to find interface failure between FRP plate and concrete in near surface-mounted (NSM) retrofit using FRP plate. As a result, it was found that the bond strength between concrete and NSM FRP plate had a close relationship with shape of FRP, concrete compressive strength and bond length. However, research need is increasing about another factors such as suitable space of FRP plate and group effect. In this study, therefore, a bond test was performed with aforementioned factors and compared with a previous equation to verify its suitability for predicting bond strength of NSM FRP plate. From the test, it was found that the bond strength increased according to the increase of space of NSM FRP plates even if its bond length was same. The splitting failure of concrete governed when space of FRPs was too narrow and it changed to FRP's tensile failure with increase of the space. From the evaluation of test specimens using previous equation, it was found that the bond strength could be predicted properly with consideration of group effect.

Immediate breast reconstruction following nipple-sparing mastectomy in an Asian population: Aesthetic outcomes and mitigating nipple-areolar complex necrosis

  • Pek, Wan-Sze;Tan, Bien-Keem;Ng, Yvonne Ying Ru;Tan, Veronique Kiak Mien;Rasheed, Mohamed Zulfikar;Tan, Benita Kiat Tee;Ong, Kong Wee;Ong, Yee Siang
    • Archives of Plastic Surgery
    • /
    • v.45 no.3
    • /
    • pp.229-238
    • /
    • 2018
  • Background Nipple-sparing mastectomies (NSMs) are increasingly performed to obtain the best aesthetic and psychological outcomes in breast cancer treatment. However, merely preserving the nipple-areolar complex (NAC) does not guarantee a good outcome. Darkly pigmented NACs and a tendency for poor scarring outcomes are particular challenges when treating Asian patients. Herein, we review the reconstructive outcomes following NSM at Singapore General Hospital. Methods All breasts reconstructed following NSM over an 11-year period from 2005 to 2015 were reviewed. Information was collected from the patients' records on mastectomy indications, operative details, and complications. Patient satisfaction, breast sensation, and aesthetic outcomes were evaluated in 15 patients. Sensation was quantified using the Semmes-Weinstein monofilament test. Results A total of 142 NSMs were performed in 133 patients for breast cancer (n=122, 85.9%) or risk reduction (n=20, 14.1%). Of the procedures, 114 (80.2%) were autologous reconstructions, while 27 (19.0%) were reconstructions with implants. Complications occurred in 28 breasts (19.7%), with the most common complication being NAC necrosis, which occurred in 17 breasts (12.0%). Four breasts (2.8%) had total NAC necrosis. The overall mean patient satisfaction score was 3.0 (good). The sensation scores were significantly diminished in the skin envelope, areola, and nipple of breasts that had undergone NSM compared to non-operated breasts (P<0.05). Half of the subset of 15 patients in whom aesthetic outcomes were evaluated had reduced nipple projection. Conclusions Immediate reconstruction after NSM was performed with a low complication rate in this series, predominantly through autologous reconstruction. Patients should be informed of potential drawbacks, including NAC necrosis, reduced nipple projection, and diminished sensation.

Flexural Reinforcement of Timber Beams Using Carbon Fiber Plates (탄소섬유판을 사용한 목재 보의 휨보강)

  • Choi, Jin-Chul;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.238-246
    • /
    • 2022
  • This paper summarizes the development and evaluation of the reinforcement details of CFRP plates to improve the bending performance of wooden beams. In this study, the reinforcing technology using high-strength bolts for the end of beam were developed as reinforcement details for reinforcing wooden beams with CFRP plates by EBM method. In order to evaluate the bending performance, a bending test was conducted for the specimens with details of reinforcement such as the EBM method and the NSM method. From the experimental results, the EBM specimens without end restraints had both the CFRP plate attachment failure and the splitting failure of the wood. In the load-displacement curve, the non-reinforced specimens exhibited linear elastic behavior and then brittle fracture after the maximum load. The maximum load of the specimens reinforced by the EBM method increased by 31.5~63.0% compared to the non-reinforced specimens, and the maximum load according to the end restraints of the high-strength bolts increased by 24.0%. Based on the reinforcement amount of the same CFRP plate, EBM reinforcement was 2.67 times larger in maximum load increase rate than NSM reinforcement.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Investigation of Galling In Forming Galvanized Steel Sheet

  • Altan, Taylan;Kardes, Nimet;Kim, Hyunok
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The major purpose of the present study is to evaluate the performance of various galvanized (GI) or galvannealed (GA) mild steels and AHSS in stamping applications. Finite Element Analysis (FEA) of selected stamping operations was conducted to estimate the critical pressure boundary conditions that exist in practice. Using this information, laboratory tribotests, e.g. Twist Compression (TCT), Deep Drawing (DDT) and Strip Drawing (SDT) Tests, were developed to evaluate the performance of selected lubricants and die materials/coatings in forming galvanized steels of interest. The sheet materials investigated included mild steels and AHSS (e.g. DP600 GI/GA, DP780 GI/GA, TRIP780 GA and DP980 GI/GA). Experimental results showed that galvanized material resulted in more galling, while galvannealed material showed more powdering and flaking. The surface roughness and chemical composition of galvanized sheet materials affected the severity of galling under the same testing conditions, i.e. lubricants and die materials/coatings. The results of this study helped to determine the critical interface pressure that initiates lubricant failure and galling in stamping selected galvanized sheet materials. Thus, to prevent or postpone the critical interface conditions, the results of this study can be used to select the optimum combination of galvanized sheet, die material, die coating and lubricant for forming structural automotive components.

A Study of Development ODBC Driver for Multimedia Data Processing (멀티미디어 데이터 처리를 위한 ODBC 드라이버 개발에 관한 연구)

  • 이말례;박일록
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.3
    • /
    • pp.23-30
    • /
    • 1998
  • The ODBC(Open Database Connectivity) is particularly efficient in the dynamic client/server environment. Besides, the ODBC provides the functions that can handle multimedia data. Due to this feature, we are able to use the DBMS that supports the ODBC as a multimedia server. In this thesis, we describe the development of the ODBC driver for Relational DBMS. The Relational DBMS ODBC Driver consists of the client module and the server module. The client module is called the SRM(Server Request Module) and the server module is CSM(Client Service Module). These two modules are connected through the network module called the NSM(Network Service Module). We have conducted both the functional and the interoperability test of our ODBC Driver It turned out that the ODBC driver operated with these client DBMS tools successfully. In all, due to our development of the Relational DBMS ODBC Driver, DBMS is now capable of processing multimedia data and supporting the client applications including the DBMS tools.

  • PDF

Side-NSM composite technique for flexural strengthening of RC beams

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Saiful Islam, A.B.M.;Salam, Md. Abdus;Kim, Hung Mo
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.439-448
    • /
    • 2017
  • Reinforced concrete (RC) infrastructures often require strengthening due to error in design, degradation of materials properties after prolong utilization and increases load carrying capacity persuaded by new use of the structures. For this purpose, a newly proposed Side Near Surface Mounted (SNSM) composite technique was used for flexural strengthening of RC beam specimens. Analytical and non-linear finite element modeling (FEM) using ABAQUS were performed to predict the flexural performance of RC specimens strengthened with S-NSM using steel bars as a strengthening reinforcement. RC beams with various SNSM reinforcement ratios were tested for flexural performance using four-point bending under monotonic loading condition. Results showed significantly increase the yield and ultimate strengths up to 140% and 144% respectively and improved failure modes. The flexural response, such as failure load, mode of failure, yield load, ultimate load, deflection, strain, cracks characteristic and ductility of the beams were compared with those predicted results. The strengthened RC beam specimens showed good agreement of predicted flexural behavior with the experimental outcomes.

Temperature Variation Corresponding to the Protection Method and Edge Distance in Near-Surface-Mounted FRP in Concrete with Fire Protection (콘크리트내 표면매립보강된 FRP의 내화단열방법과 연단거리에 따른 온도변화)

  • Lim, Jong-wook;Seo, Soo-yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.137-146
    • /
    • 2019
  • Recently, the Near-Surface-Mounting method using Fiber reinforced polymer (FRP) has been developed and applied to the reinforcement of many concrete structural members. However, as a part of the fire resistance design, there is a lack of research related to fire insulation for the areas reinforced with FRP. In case of NSM reinforcement, there is a difference in the transferred temperature from the external surface to the groove corresponding to the location of the groove where the FRP is embedded, and the effect of this should be reflected in the fireproof insulation design. Therefore, in this study, after forming grooves for surface embedding in concrete blocks, fireproof insulation reinforcement was performed using Calcium Silicate (CS) fireproof board and an experiment to evaluate the temperature transfer was performed. By observing the temperature at these groove positions, the reduction of temperature transfer according to fireproof insulation detail was studied. As a result, when the NSM-FRP is properly fire-insulated using the CS-based fireproof board, the epoxy inside the groove does not reach its glass transition temperature until the external temperature reaches $800^{\circ}C$.