• Title/Summary/Keyword: NSGA3

Search Result 25, Processing Time 0.031 seconds

Combined Economic and Emission Dispatch with Valve-point loading of Thermal Generators using Modified NSGA-II

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.490-498
    • /
    • 2013
  • This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용)

  • Koo, Bo-Young;Kim, Tae-Soon;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.687-696
    • /
    • 2007
  • Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation.

A Study on the Operational Scheduling for ROK's Navy Ships Using NSGA-II (NSGA-II를 이용한 한국해군 함정 운용계획에 대한 연구)

  • Jung, Whan-Sik;Lee, Jae-Yeong;Lee, Yong-Dae
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This paper studies the problem seeking an efficient operational scheduling for battle ships in the Republic of Korea's navy. The ships' availability means that their main systems such as weapons, navigation and propulsion are in full operational readiness. If some of the major systems are not ready, then the ships should not be available for operations. It is required to maintain a high level availability under the limited resources as it determines the strength of ROK's navy. However, it will result in inefficiencies if some ships are operated without proper maintenance only to improve their availability. Thus, this study suggests the operational scheduling for two squadron ships that considers multiple objectives such as availability, overlapping maintenance, and deviation from available ships in a particular week. We applied NSGA-II algorithm to find better solutions for more efficient scheduling. The experiment result reached an efficient solutions after 1,500 generations. Two efficient operational schedules were compared on the basis of three multiple objectives among them.

A Temporal Convolutional Network for Hotel Demand Prediction Based on NSGA3 Feature Selection

  • Keehyun Park;Gyeongho Jung;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.121-128
    • /
    • 2024
  • Demand forecasting is a critical element of revenue management in the tourism industry. Since the 2010s, with the globalization of the tourism industry and the increase of different forms of marketing and information sharing, such as SNS, forecasting has become difficult due to non-linear activities and unstructured information. Various forecasting models for resolving the problems have been studied, and ML models have been used effectively. In this study, we applied the feature selection technique (NSGA3) to time series models and compared their performance. In hotel demand forecasting, it was found that the TCN model has a high forecasting performance of MAPE 9.73% with a performance improvement of 7.05% compared to no feature selection. The results of this study are expected to be useful for decision support through improved forecasting performance.

Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps (크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용)

  • Jeong, Jong Hyun;Baek, Seok Heum;Suh, Yong Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.893-904
    • /
    • 2013
  • In this paper, a Kriging metamodel-based multi-objective optimization strategy in conjunction with an NSGA-II(non-dominated sorted genetic algorithm-II) has been employed to optimize the valve-plate shape of the axial piston pump utilizing 3D CFD simulations. The optimization process for minimum pressure ripple and maximum pump efficiency is composed of two steps; (1) CFD simulation of the piston pump operation with various combination of six parameters selected based on the optimization principle, and (2) applying a multi-objective optimization approach based on the NSGA-II using the CFD data set to evaluate the Pareto front. Our exploration shows that we can choose an optimal trade-off solution combination to reach a target efficiency of the axial piston pump with minimum pressure ripple.

GBNSGA Optimization Algorithm for Multi-mode Cognitive Radio Communication Systems (다중모드 Cognitive Radio 통신 시스템을 위한 GBNSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Kim, Jin-Up;Kim, Hyung-Jung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.314-322
    • /
    • 2007
  • This paper proposes a new optimization algorithm named by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) which determines the best configuration for CR(Cognitive Radio) communication systems. Conventionally, in order to select the proper radio configuration, genetic algorithm has been introduced so as to alleviate computational burden along the execution of the cognition cycle proposed by Mitola. This paper proposes a novel optimization algorithm designated as GBNSGA for cognitive engine which can be described as a hybrid algorithm combining well-known Pareto-based NSGA(Non-dominated Sorting Genetic Algorithm) as well as GP(Goal Programming). By conducting computer simulations, it will be verified that the proposed method not only satisfies the user's service requirements in the form of goals. It reveals the fast optimization capability and more various solutions rather than conventional NSGA or weighted-sum approach.

Approximate Optimization Design Considering Automotive Wheel Stress (자동차용 휠의 응력을 고려한 근사 최적 설계)

  • Lee, Hyunseok;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

Approximate Multi-Objective Optimization of Scroll Compressor Lower Frame Considering the Axial Load (축하중을 고려한 스크롤 압축기 하부 프레임의 최적설계)

  • Kim, JungHwan;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.308-313
    • /
    • 2015
  • In this research, a multi-objective optimal design of a scroll compressor lower frame was approximated, and the design parameters of the lower frame were selected. The sensitivity of the design parameters was induced through a parameter analysis, and the thickness was determined to be the most sensitive parameter to stress and deflection. All of the design parameters regarding the mass are sensitive factors. It was formulated for the problem about stress and deflection to be caused by the axial load. The sensitivity of the design variables was determined using an orthogonal array for the parameter analysis. Using the central composite and D-optimal designs, a second polynomial approximation of the objective and constraint functions was formulated and the accuracy was verified through an R-square. These functions were applied to the optimal design program (NSGA-II). Through a CAE analysis, the effectiveness of the central composite and D-optimal designs was determined.

Methodology for Optimizing Permittivity Distribution of 145 kV Miniaturized Functional Graded Spacer Using Non-Dominated Sorting Genetic Algorithm-II (비지배 정렬 유전 알고리즘-II를 이용한 145 kV급 축소형 경사기능성 적용 스페이서의 유전율 분포 최적화 방법론)

  • Noh, Yo-Han;Kim, Seung-Hyun;Cheong, Jong-Hun;Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.225-230
    • /
    • 2020
  • Recently, with the miniaturization of GIS, there is a need for the miniaturization of spacers as accessories. Miniaturized spacers make it difficult to secure adequate insulation distances, resulting in a more concentrated electric field at the triple junction of high-voltage (HV) conductor-insulator (spacer)-insulation gas (SF6), which is a weakness in GIS. Therefore, by introducing a new concept design technology, functionally graded material (FGM), which is recently applied to various materials and parts industries, three-dimensional control of the dielectric constant distribution in a spacer can be expected to alleviate triple-junction electric field occupancy and improve insulation performance. In this study, we propose an optimized model using NSGA-II to optimize the permittivity distribution of FGM applied spacer.

Optimizing Bi-Objective Multi-Echelon Multi-Product Supply Chain Network Design Using New Pareto-Based Approaches

  • Jafari, Hamid Reza;Seifbarghy, Mehdi
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.374-384
    • /
    • 2016
  • The efficiency of a supply chain can be extremely affected by its design which includes determining the flow pattern of material from suppliers to costumers, selecting the suppliers, and defining the opened facilities in network. In this paper, a multi-objective multi-echelon multi-product supply chain design model is proposed in which several suppliers, several manufacturers, several distribution centers as different stages of supply chain cooperate with each other to satisfy various costumers' demands. The multi-objectives of this model which considered simultaneously are 1-minimize the total cost of supply chain including production cost, transportation cost, shortage cost, and costs of opening a facility, 2-minimize the transportation time from suppliers to costumers, and 3-maximize the service level of the system by minimizing the maximum level of shortages. To configure this model a graph theoretic approach is used by considering channels among each two facilities as links and each facility as the nodes in this configuration. Based on complexity of the proposed model a multi-objective Pareto-based vibration damping optimization (VDO) algorithm is applied to solve the model and finally non-dominated sorting genetic algorithm (NSGA-II) is also applied to evaluate the performance of MOVDO. The results indicated the effectiveness of the proposed MOVDO to solve the model.