• Title/Summary/Keyword: NR activity

Search Result 97, Processing Time 0.022 seconds

Production and Characterization of Nitrate Reductase Deficient Mutants in Petunia parviflora

  • Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.706-715
    • /
    • 2006
  • Nitrate reductase deficient (NR) mutant lines were selected indirectly by their resistance to 100mM chlorate in cell cultures of P. parviflora. A total of 585 chlorate resistant lines were confirmed by a second passage on a high concentration of chlorate. Frequency of spontaneous mutation was $9.7{\times}10^{-7}$ in 3 month old suspension-cultured cells, and in non-selective media containing amino acids as sole nitrogen source. The frequency of mutation could be increased up to 11-fold by culture for 12 months. Out of 40 randomly selected calli, 22 were fully deficient in NR. The rest of the clones contained a decreased level of NR activity. Further characterization was carried out in 13 mutant lines which were fully deficient in NR and in 5 mutant lines containing residual (0-7.0%) NR activity, as compared to wild-type cells cultured on the same medium. The $NR^-$ mutants were tentatively classified as defective in the NR apoenzyme (nia-type; 11 mutant lines including the 5 with residual NR activity) or in the molybdenum cofactor (cnx-type; 7 mutant lines) by the XDH activity. The cnx-type could be further classified into two groups. In one group (5 mutant lines) of these, the NR activity could be partially restored by nonphysiologically high (1.0mM) molybdate in the culture medium. Both types of $NR^-$ mutants were unable to grow on minimal medium containing nitrate as sole nitrogen source, but grew well on amino acids. They also proved to be extremely sensitive to the standard medium ($MSP_1$) containing nitrate and ammonium. Shoot regeneration was obtained only in the $NR^-$ mutants, which contained residual NR activity, but they so far have failed to grow into plants.

Isolation of Mutants Overproducing Amylase from Nuruk Fungi by NTG (NTG에 의한 Amylase활성이 높은 누룩사상균의 변이주의 분리)

  • 정혁준;김영숙;유대식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.987-994
    • /
    • 2000
  • Aspergillus coreanus NR 15-1, Asp. oryzae NR 15-3 and Asp. oryzae NR 2-5 isolated from traditional Korean nuruk were screened as parental strains producing starch hydrolyzing enzymes. They were mutagenized by N-methyl -N'-nitro-N-nitrosoguanidine (NTG) and mutants were isolated for analysis of various amylase activities and the ability of acid production. Among them, the mutants harboring high saccharogenic activity, dextrinogenic activity, and the ability of acid production were selected. Fifteen, six, and five strains of mutants were isolated from Asp. coreanus NR 15-1, Asp. oryzae NR 2-5, and Asp. oryzae NR 15-3, respectively followed by NTG mutagenesis. Among these mutants, thirteen strains were identified as auxotrophic mutants. \ulcorner (Arg. ̄) mutant from Asp. coreanus NR 15-1 showed high glucoamylase activity and total acid productivity. Z6 (Ade. ̄) mutant from Asp. oryzae NR 2-5 showed the highest $\alpha$-amylase activity, therefore \ulcorner and Z6 mutant were selected.

  • PDF

Effects of Nrogen Form and Light Conditions on the Nitrate Reductase Activity of Ulva pertusa (Chlorophyta) and Ecklonia cava (Phaeophyta) (구멍갈파래 (Ulva pertusa Kjellman)와 감태 (Ecklonia cava Kjellman)의 질산환원요소 활성에 미치는 질소원 형태와 빛의 효과)

  • Hwang, Jae-Ran;Kang, Yun-Hee;Oak, Jung-Hyun;Lee, Sang-Rae;Chung, Ik-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.1
    • /
    • pp.64-70
    • /
    • 2011
  • Nitrate reductase (NR) is activated by nitrogen sources (${NO_3}^-$ and ${NH_4}^+$) and irradiance. This study investigated the effects of these factors on the NR activity of Ulva pertusa (Chlorophyta) and Ecklonia cava (Phaeophyta). In addition, the ammonium (${NH_4}^+$) and nitrate (${NO_3}^-$) uptake rates of the two species were examined. U. pertusa took up most of the ${NO_3}^-$ and ${NH_4}^+$ in the medium during a 3hour incubation, while E. cava had a relatively high uptake rate after 3 hours. The NR activities of the two species were affected by the nitrogen source and irradiance and were highest when they were exposed to ${NO_3}^-$-rich medium and high irradiance. However, the patterns of NR activity differed between the two species. In ${NO_3}^-$-rich medium and high irradiance, U. pertusa achieved the highest NR activity ($2.01{\pm}0.07\;{\mu}mol$ ${NO_2}^-$ $g^{-1}$ DW $h^{-1}$) within the first 3 hours and then this activity decreased drastically. By contrast, the NR activity of E. cava ($0.36{\pm}0.04\;{\mu}mol$ ${NO_2}^-$ $g^{-1}$ DW $h^{-1}$) was constant for 12 hours. When exposed to darkness, the NR activity of U. pertusa decreased dramatically, while that of E. cava increased gradually for 12 hours. Therefore, E. cava is able to maintain NR activity during the dark because of its adequate carbohydrate reserves and substrate.

Analysis of Nitrate Reductase Activity for Dominant Tree Leaves in the Northern Aspect Forest of Changbai Mountain, China (중국 장백산 북사면 산림에서 우세목의 잎 내 질소 환원 효소 활성도 분석)

  • wen, Li-Yu;Kim, Ji-Hong
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.3
    • /
    • pp.29-36
    • /
    • 2003
  • This paper concerned the application of improvement in Vivo of Traditional Method for determination of nitrate reductase (NR) activity of leaves to dominant tree species in five forest communities of northern aspect of Changbai Mountain. The results indicated that the NR activity of tree species was related to shade tolerance, and the intolerant tree species had higher NR activity. The NR of a species was also related to the vertical structure and ecological site condition. The tree species, which have higher NR activities should be selected for fast growing and high yield tree species.

  • PDF

Effects of Iron, Chelators and Nitrate Concentration on in vivo Fluorescence and Nitrate Reductase of the Red Tide Organism Amphidinium carterae

  • Yang, Sung-Ryull;Song, Hwan-Seok;Pae, Se-Jin;Huh, Sung-Hoi
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • A red tide organism, Amphidinium carterae was incubated under different iron/chelator and nitrate concentrations to investigate the factors controlling the growth. The chelation capacity played a critical role in regulating the nitrate reductase (NR) activity and in vivo fluorescence of this organism. However, there was a significant difference between the NR activity and in vivo fluorescence in response to trace metals and chelator treatments. In vivo fluorescence was the highest in FeEDTA 10 ${\mu}$M treatments and the lowest in DTPA 10 ${\mu}$M treatments. This indicates that the availability of the trace metal is important in regulating the in vivo fluorescence of this photosynthetic microalgae In contrast, NR activity showed the highest values in trace metal enriched treatments, and trace metal + DTPA treatments showed fairly high NR activities. This suggests that DTPA treatment did not hinder the NR activity as much as it did in vivo fluorescence. In vivo fluorescence and NR activity increased with nitrate concentration of up to 50 ${\mu}$M and remained relatively constant or the rate of increase decreased above that concentration, indicating that initial nitrate concentration of higher than a certain level would not accelerate the growth of A. carterae. Further investigation is needed to elucidate the reason for the difference in timing sequence between the NR and in vivo fluorescence in response to different metal treatments and chelation capacity.

  • PDF

Optimal Conditions of Protoplast Formation of Aspergillus coreanus NR 15-1 and Aspergilus oryzae NR 2-5 (Aspergillus coreanus NR 15-1 과 Aspergillus oryzae NR 2-5의 원형질체 형성의 최적조건)

  • 정혁준;유대식
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.12-17
    • /
    • 2001
  • Aspergil-lus coreanus NR-15 and Aspergilus oryzae NR-2-5 from traditional Korean Nuruk were selected as parental strains producing starch hydrolysis enzyme. Xll(Arginine-) mutant from A. coreanus NR 15-1 showed high glu-doamylase activity and total acid productivity. Z6(Adenine-) mutant from A. oryzae NR2-5 showed the highest $\alpha$-amylase activity. Therefore, both XII and Z6 mutants were selected and investigated for the optimal conditions of protoplast formation for protoplast fusion. Mixture of equal amount of cellulase and driselase(10mg/ml each) was the most effective as lytic enzymes. The optimal pH and temperature for protoplast formation were 5.0 and $30^{\circ}C$, respectively. The most effective reaction for protoplast formation time was 4 hours. The maximum of protoplst for- mation of Xll mutant and Z6 mutant were $6.54$\times$10^{7}$ protoplasts/ ml and $3.04$\times$10^{ 7}$ protoplasts/ml, and the regen-eration frequencies of the protoplasts were 11.3% and 11.6%, respectively. The size of the protoplasts from X11 and Z6 mutants were 3~6 $\mu\textrm{m}$ and 4~9$\mu\textrm{m}$, respectively.

  • PDF

Cloning and Sequence Analysis of Spinach (Spinacia oleracea L. cv Ace) Nitrate Reductase cDNA (시금치 nitrate reductase cDNA 클로닝 및 염기서열 분석)

  • Park, Nu-Ri;Chung, Jong-Bae;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.45 no.3
    • /
    • pp.129-133
    • /
    • 2002
  • Suppression of nitrate accumulation in spinach and lettuce through foliar application of chitosan formula containing micronutrients is related with the increase of the nitrate reductase (NR) activity. If NR in spinach were highly expressed to increase the assimilatory activity, nitrate content could be reduced. For this, NR cDNA was cloned from the isolated mRNAs of spinach using reverse transcriptase-PCR. Nucleotide sequence of cloned spinach NR cDNA showed highly deduced amino acid sequence identity ($71{\sim}82%$) with other known plant NR genes. Only two nucleotide-base differences were observed in the cloned NR cDNA compared with that of the published spinach NR cDNA.

Interactions between Oxidative Pentose Phosphate Pathway and Enzymes of Nitrate Assimilation "Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" and Ammonium Reassimilation "Glutamine Synthetase$_2$" as affected by $No_3$-Concentration ($No_3$-수준이 Oxidative Pentose Phosphate Pathway와 질산동화작용 효소"Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" 및 암모늄재동화작용 주요효소"Glutamine Synthetase$_2$"활성도의 상호관계에 미치는 영향)

  • Sohn, Sang-Mok;Michael James Emes
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.468-475
    • /
    • 1992
  • In order to understand more clearly the integration between N-assmilation and C-metabolism in relation to N fertilization, a pot experiment with 5 different level of N fertilization(0, 5, 10, 25, 50 mM NO$_3$$_{[-10]}$ ) was conducted in Manchester, U.K. The peas (Pisum sativum L., cv. Early Onward) were sown in vermiculate (5 cm depth) and cultivated for 6 days under temperature controlled dark room conditions ($25^{\circ}C$). The plants received frequent irrigation with a nutrient solution: it was fertilized every 2 days, 3 times a day at 10h, 13h, 16h respectively. Elevated NO$_3$$^{[-10]}$ concentration, the activity levels of NR, NiR, total GS(crude extract), GS$_2$(plastid) in both root and shoot were increased and reached the peak in 5~25 mM, except NiR specific activity which increased its activity continually until 50 mM NO$_3$$^{[-10]}$ treatment. Total activities of GS (crude extract) in both root and shoot became higher than those of GS$_2$(Plastid), and the activity ratios of total GS in the crude extract and GS$_2$ in the plastids were 3.0 to 4.3 in root, but 3.2 to 10.6 in shoot. It was concluded that the reductants and A TP from OPPP itself should be enough to achieve the high rate of NR, NiR, GS$_1$, GS$_2$ in plant root and shoot for reduction or assimilation of nitrogen, but these enzyme activities might be inhibited by an excess of NO$_3$$^{[-10]}$ influx over the reduction capacity.

  • PDF

The Role of Nuclear Receptor Subfamily 1 Group H Member 4 (NR1H4) in Colon Cancer Cell Survival through the Regulation of c-Myc Stability

  • Lee, Yun Jeong;Lee, Eun-Young;Choi, Bo Hee;Jang, Hyonchol;Myung, Jae-Kyung;You, Hye Jin
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.459-468
    • /
    • 2020
  • Nuclear receptor subfamily group H member 4 (NR1H4), also known as farnesoid X receptor, has been implicated in several cellular processes in the liver and intestine. Preclinical and clinical studies have suggested a role of NR1H4 in colon cancer development; however, how NR1H4 regulates colon cancer cell growth and survival remains unclear. We generated NR1H4 knockout (KO) colon cancer cells using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (CAS9) technology and explored the effects of NR1H4 KO in colon cancer cell proliferation, survival, and apoptosis. Interestingly, NR1H4 KO cells showed impaired cell proliferation, reduced colony formation, and increased apoptotic cell death compared to control colon cancer cells. We identified MYC as an important mediator of the signaling pathway alterations induced by NR1H4 KO. NR1H4 silencing in colon cancer cells resulted in reduced MYC protein levels, while NR1H4 activation using an NR1H4 ligand, chenodeoxycholic acid, resulted in time- and dose-dependent MYC induction. Moreover, NR1H4 KO enhanced the anti-cancer effects of doxorubicin and cisplatin, supporting the role of MYC in the enhanced apoptosis observed in NR1H4 KO cells. Taken together, our findings suggest that modulating NR1H4 activity in colon cancer cells might be a promising alternative approach to treat cancer using MYC-targeting agents.

Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase

  • Shi, Fu-Mei;Li, Ying-Zhang
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.79-85
    • /
    • 2008
  • The source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants. The NR inhibitor had a significant effect on VD-toxins-induced NO production; whereas NOS inhibitor had a slight effect. NR activity was significantly implicated in NO production. The results indicated that as NO was induced in response to VD-toxins in Arabidopsis, the major source was the NR pathway. The production of NOS-system appeared to be secondary.