• Title/Summary/Keyword: NPK Application

Search Result 184, Processing Time 0.034 seconds

Changes in Crop Yield and $CH_4$ Emission from Rice Paddy Soils Applied with Biochar and Slow-release Fertilizer (논토양에서 바이오차르 투입 및 완효성비료 시용에 따른 메탄발생량과 작물생산량 변화)

  • Kim, Daegyun;Cho, Kwangrae;Won, Taejin;Bak, In-Tae;Yoo, Gayoung
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Emission reduction of $CH_4$ (methane gas) from rice paddy soil is a very important measure for climate change mitigation in agricultural sector. In this study, we investigated the changes in crop yield and $CH_4$ emissions in response to application of biochar and fertilizers. The experimental site is located in Hwasung, Kyunggido and experimental design is the split-plot method with three replicates. Treatments included rice straw (RS) and biochar (BC) amendments nested with the conventional NPK fertilizer (NPK) and slow release fertilizer (SRF). Control was also prepared with the soil with the conventional NPK fertilization with no amendment. Measurement of $CH_4$ emission was conducted during the growing season of 2014 using a dynamic chamber method. The results showed that application of rice straw increased daily $CH_4$ emission rate by 15%, while application of biochar reduced daily $CH_4$ emission rate by 38%. When we combined biochar application with slow release fertilizer, $CH_4$ emission was reduced by 45%. Further, the crop yield was also increased in all treatments compared with the control except for the treatment of rice straw application with slow release fertilizer. Overall results imply that biochar amendment to agricultural soil can be an effective strategy to decrease annual $CH_4$ emission with no reduction in crop yield.

Improvement of Ammonia Emission Inventory Estimation Methodology for Fertilizer Application in the Agricultural Sector (농업부문 비료사용 농경지의 암모니아 배출량 산정방법 개선)

  • Choi, Hanmin;Hyun, Junge;Kim, You Jin;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • Ammonia is main precursor gas of secondary particulate matter and contributes almost 78% of total ammonia emission from the agricultural sector in Korea. The current method of estimating ammonia emission from fertilizer application, which contributes 7% of the total emission, has high uncertainty and needs to be improved to better predict PM2.5 concentration. In this study, we suggest an improvement method for ammonia emission quantification from fertilizer application. The first improvement was in the emission factor of NPK fertilizer by conducting a field study to verify the currently used factor. The improved NPK emission factor of 52.2 kg NH ton-1N was confirmed by comparing with the value from the EEA (European Environment Agency) and adjusting the value for the Korean climate and soil conditions. We also improved the amount of fertilizer usage by including the sales amount to the fertilizer supply amount of the Korean Farmers Association, increasing total fertilizer usage by 39.8%. As the statistical data on fertilizer supply and sales are compiled yearly, we estimated monthly emission of ammonia by considering cultivated areas and timing of fertilization for each crop. In summary, we suggest a novel and practical method to improve estimation methodology of ammonia emission from the field of fertilizer application: 1) emission factor of NPK fertilizer was reconfirmed; 2) total amount of fertilizer use was revised considering fertilizer sales; and 3) monthly emission of ammonia was realized by considering different crop practices. A bottom-up approach to compile activity data is needed to increase the estimation accuracy of monthly emission of ammonia, which is very helpful for predicting PM2.5 concentration.

Growth and yield components of rice under different NPK rates in Prateah Lang soil type in Cambodia

  • Kea, Kong;Sarom, Men;Vang, Seng;Kato, Yoichiro;Yamauchi, Akira;Ehara, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.361-361
    • /
    • 2017
  • The NPK are known as macro elements that affect crop growth and yield. In 1989, Cambodia Agricultural Research and Development Institute (CARDI) gave a recommendation rate of fertilizer on rice production based on soil types. This recommended rate of NPK seems however relatively low as compared to farmers' practices nowadays and the amount in the neighboring countries. The CARDI recommended rate for Prateah Lang soil type is 50kg N, $25kg\;P_2O_5$, $25kg\;K_2O\;ha^{-1}$ while recent farmers' practice rates are 55 - 64kg N, 24 - 46kg $P_2O_5$, $30kg\;K_2O\;ha^{-1}$. However, the overuse of chemical fertilizer will lead to un-preferable plant growth, insect pest, disease and economic yield. Thus, we examined the effect of different NPK application rates on the growth and yield components in Prateah Lang soil type in Takeo province to investigate appropriate rates for improving rice productivity with economic efficiency. This study was conducted from July to November during wet season in 2013. A multi-locational trial with 6 treatments (T0 - T5) of NPK rates in 5 locations (trial 1 - 5) with 3 replications was conducted. The different combinations of NPK application were employed from 0, 50, 60, 80, 100, $120kg\;N\;ha^{-1}$, 0, 25, 30 45, $60kg\;P_2O_5\;ha^{-1}$ and 0, 15, 25, 30, $45kg\;K_2O\;ha^{-1}$. Urea, DAP and KCl were used for fertilization. Split application was employed [basal: 20% of N, 100% of P and K, top dressing-1st: 40% of N (30DAT), 2nd: 40% of N (PI stage)]. Three-week-old seedlings of var. Phka Rumdoul were transplanted with 2 - 3 seedlings $hill^{-1}$ with $20cm{\times}20cm$ spacing. Plant length, tiller number at the maximum tillering stage and yield components were measured. The different rates of NPK application affected some yield components. The panicle number per hill was the most important key component followed by the spikelet number per panicle. However, the other parameters such as the filled grain percentage and 1000 grains weight had small effect or weak relation with the yield. Although the panicle number per hill had a significantly positive correlation with the stem number per hill, it was not correlated with the percentage of productive culms. The variation in the grain yield among the 5 trials was small and the difference was not significant. Although the yield tended to be higher at higher N and P application, there was no significant difference above 60kg N and $30kg\;P_2O_5$. The yield was the highest at 15, 30 and $45kg\;K_2O$ followed by $25kg\;K_2O$. The relationships between N, P and the stem number per hill were significantly linear positive, though it was not linear between K and the stem number. From these results, to increase rice productivity in the target area, farmers' effort to increase N and P input rather than CARDI recommendation up to 60kg N and $30kg\;P_2O_5$ will be sufficient considering economic efficiency. Besides, the amount of K application should be reconsidered.

  • PDF

Growth and yield components of rice under different NPK rates in prateah lang soil type in cambodia

  • Kea, Kong;Sarom, Men;Vang, Seng;Kato, Yoichiro;Yamauchi, Akira;Ehara, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.363-363
    • /
    • 2017
  • The NPK are known as macro elements that affect crop growth and yield. In 1989, Cambodia Agricultural Research and Development Institute (CARDI) gave a recommendation rate of fertilizer on rice production based on soil types. This recommended rate of NPK seems however relatively low as compared to farmers' practices nowadays and the amount in the neighboring countries. The CARDI recommended rate for Prateah Lang soil type is 50kg N, 25kg P2O5, 25kg K2O ha-1 while recent farmers' practice rates are 55 - 64kg N, 24 - 46kg P2O5, 30kg K2O ha-1. However, the overuse of chemical fertilizer will lead to un-preferable plant growth, insect pest, disease and economic yield. Thus, we examined the effect of different NPK application rates on the growth and yield components in Prateah Lang soil type in Takeo province to investigate appropriate rates for improving rice productivity with economic efficiency. This study was conducted from July to November during wet season in 2013. A multi-locational trial with 6 treatments (T0 - T5) of NPK rates in 5 locations (trial 1 - 5) with 3 replications was conducted. The different combinations of NPK application were employed from 0, 50, 60, 80, 100, 120kg N ha-1, 0, 25, 30 45, 60kg P2O5 ha-1 and 0, 15, 25, 30, 45kg K2O ha-1. Urea, DAP and KCl were used for fertilization. Split application was employed [basal: 20% of N, 100% of P and K, top dressing-1st: 40% of N (30DAT), 2nd: 40% of N (PI stage)]. Three-week-old seedlings of var. Phka Rumdoul were transplanted with 2 - 3 seedlings hill-1 with $20cm{\times}20cm$ spacing. Plant length, tiller number at the maximum tillering stage and yield components were measured. The different rates of NPK application affected some yield components. The panicle number per hill was the most important key component followed by the spikelet number per panicle. However, the other parameters such as the filled grain percentage and 1000 grains weight had small effect or weak relation with the yield. Although the panicle number per hill had a significantly positive correlation with the stem number per hill, it was not correlated with the percentage of productive culms. The variation in the grain yield among the 5 trials was small and the difference was not significant. Although the yield tended to be higher at higher N and P application, there was no significant difference above 60kg N and 30kg P2O5. The yield was the highest at 15, 30 and 45kg K2O followed by 25kg K2O. The relationships between N, P and the stem number per hill were significantly linear positive, though it was not linear between K and the stem number. From these results, to increase rice productivity in the target area, farmers' effort to increase N and P input rather than CARDI recommendation up to 60kg N and 30kg P2O5 will be sufficient considering economic efficiency. Besides, the amount of K application should be reconsidered.

  • PDF

Changes in Rice Yield, Nutrients' Use Efficiency and Soil Chemical Properties as Affected by Annul Application of Slag Silicate Fertilizer (규산질비료의 매년연용이 벼수량, 양분흡수 특성 및 토양화학성 변화에 관한 연구)

  • Kim, Chang-Bae;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.280-289
    • /
    • 2002
  • This study was conducted to evaluate the effects of annual application of slowle cooled slag silicate fertilizer on rice yield and soil chemical properties. Field experiment was done on the condition of fertilization of silicate fertilizer 1,500 and $2,500kg\;ha^{-1}$ to the clay loam paddy field during 26 years from 1975 to 2000. The results obtained were as follows; Rice yield of NPK+silicate fertilizer $1,500kg\;ha^{-1}$ and $2,500kg\;ha^{-1}$ were increased by 15%, 8% respectively incomparion with NPK control plot in 2000($26^{th}$ year). Changes in average rice yield for 5 years interval were continually showed increase in the treat of silicate fertilizer $1,500kg\;ha^{-1}$ compared to NPK and NPK+silicate fertilizer $2,500kg\;ha^{-1}$ treated plot. The amounts of N, $K_2O$, CaO and MgO in the treat of silicate fertilizer $1,500kg\;ha^{-1}$ were much more than those of silicate fertilizer 2,500kg treated plot, and the treat of silicate fertilizer $1,500kg\;ha^{-1}$ showed higher in nutrients availability and fertilizers use efficiency than other treated plots at harvesting stage. Amount of N, $P_2O_5$, $K_2O$ and MgO in unhulled rice grain, those of CaO, MgO and $K_2O$ in rice straw and those of $K_2O$ and $SiO_2$ in rice root were positively recognized significant relationships with grain yield. According to soil analysis after experiment in 2000, the silicate fertilizer $2,500kg\;ha^{-1}$ annually applied plot were increased especially in soil organic matter, CEC and available phosphate content in comparison with NPK+silicate fertilizer $2,500kg\;ha^{-1}$ applied plot.

Effects of Rice Straw Compost Application on Exchangeable Potassium in Long-term Fertilization Experiments of Paddy Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • In an experiment conducted at the research field of the National Institute of Agricultural Science, we investigated the effects of mineral fertilizer and rice straw compost on exchangeable potassium and K balances, and rice grain yield under a rice single system. The treatments were no fertilization (No fert.), inorganic fertilization (N), inorganic fertilizer (N, P, K) plus rice straw compost at rates of 7.5, 15.0, 22.5, and $30.0ton\;ha^{-1}$ (NPKC7.5, NPKC15.0, NPKC22.5, and NPKC30.0, respectively). The inorganic fertilizers(N, P, K) were added with standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), and potassium ($K_2O$) were applied with $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, respectively. Exchangeable potassium for NPKC15.0 NPKC22.5, and NPK30.0 treatments was higher by $0.05{\sim}0.19cmol_c\;kg^{-1}$ than that of NPKC7.5 treatment. Increasing levels of rice straw compost resulted in an increase in the K balance from - $19.9kg\;ha^{-1}yr^{-1}$ (No fert.) to $41.9kg\;ha^{-1}yr^{-1}$ at NPKC22.5 treatment and $62.9kg\;ha^{-1}$ at NPKC30.0 treatment. Continuous application of rice straw compost with NPK fertilizers affected significantly the rice grain yields. The result of the study imply that the application of more than $22.5ton\;ha^{-1}$ of rice straw compost with NPK fertilizers are recommended as the best fertilization practice for enhancement of crop production and K supplying power of soil in the continuous rice cropping system.

Effect of NPK Fertilization on the Yields and Effective Components of Chrysanthemum boreale M. (산국의 수량과 유효성분에 대한 NPK의 효과)

  • Yang, Min-Suk;Jung, Yeun-Kyu;Sohn, Bo-Kyoon;Cho, Ju-Sik;Lee, Seong-Tae;Kim, Pil-Joo;Lee, Kyung-Dong
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.134-139
    • /
    • 2003
  • To establish the fertilization condition to increase the productivity of Chasanthemum boreale M. with high quality, the effects of three nutrients (N, P, K) on the yields and the effective components were investigated in the pot scale. NPK was applied by chemical fertilizers with $(N-P_2O_5,-K_2O=250-160-160\;kg/ha)$ as a main treatment, and NP $(N-P_2O_5,-K_2O=250-160-160\;kg/ha)$, NK $(N-K_2O =250-160\;kg/ha)$, and PK $(P_2O_5K_2O=160-160\;kg/ha)$ treatments were settled as comparison. Dry yields of C. boreale M. was increased significantly to 4 fold higher by nitrogen. Nitrogen increased apparently plant growth and inorganic nutrient uptake. In the flower, which is most useful and edible part as a herbal medicine, main amino acids were glutamic acid and aspartic acids, and the total content was increased significantly by three elements of application. In addition, the content of cumambrin A, which is known to have the effect of blood-pressure reduction, was increased source to 6.2 times by nitrogen higher than that in PK treatment. Potassium was more effective in biosynthesis of cumambrin A than phosphorus, but the biological pathway was not clear, still.

Impact of Amendments on Microbial Biomass, Enzyme Activity and Bacterial Diversity of Soils in Long-term Rice Field Experiment (개량제 장기 연용이 논토양의 미생물체량, 효소활성 및 세균 다양성에 미치는 영향)

  • Suh, J.S.;Noh, H.J.;Kwon, J.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • The long-term effects of soil management history on microbial communities are still poorly understood. Our objectives were to determine the impact of long-term application of soil amendments on microbial communities in rice paddy fields. The treatments selected were control where crops were grown without any nutrient application (CON); nitrogen-phosphorus-potassium (NPK); NPK plus compost (CNPK); NPK plus lime (LNPK); and NPK plus silicate (WNPK). The long-term addition of organic and inorganic amendments significantly changed soil chemical properties. The amount of organic carbon increased in the treatments with fertilizer and amendments over that in the soil without inputs. However, we could not observe the differences of bacterial population among the treatments, but the number of aerobic bacteria increased by the addition of amendments. Isolates from the rice paddy soils before irrigation were Dactylosporangium, Ewingella, Geobacillus, Kocuria, Kurthia, Kytococcus, Lechevalieria, Micrococcus, Micromonospora, Paenibacillus, Pedobacter, Pseudomonas, Pseudoxanthomonas, Rhodococcus, Rothia, Sphingopyxis, Stenotrophomonas, and Variovorax. Dominant genera were Arthrobacter, Kocuria, Kurthia, and Bacillus in the long-term field. Microbial biomass was the highest in the compost treatment (CNPK), and was the lowest in the CON. Dehydrogenase activity in soils treated with rice compost straw was the highest and the activity showed an increasing trend according to treatment as follows: CON < WNPK < NPK = LNPK < CNPK. These results demonstrate that soil management practice, such as optimal application of fertilizer and amendment, that result in accumulations of organic carbon may increase microbial biomass and dehydrogenase activity in long-term rice paddy soils.

Effect of the Long-term Application of Organic Matters on Microbial Diversity in Upland Soils (유기물 장기 연용이 밭토양 미생물의 다양성에 미치는 영향)

  • Suh, Jang-Sun;Kwon, Jang-Sik;Noh, Hyung-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.987-994
    • /
    • 2010
  • To investigate the effect of long term application of organic matter in upland soils, plots for treatments of NPK, NPK+pig manure compost, rape seed cake, rice straw compost, and green manure were set up. Populations of Bacillus and Gram negative bacteria were high in the plot treated with green manure application, but microbial biomass was increased with chemical fertilizer or pig manure compost in upland soils. Activities of phosphomonoesterase and dehydrogenase were high with organic matter application comparing to control. Cluster patterns analysed using phospholipid fatty acid of plots treated with rice straw and or pig manure compost were clearly different comparing with other treatments. Dominant bacteria in upland soils were Bacillus flexus, B. subtilis and B. megaterium. And the strains isolated from upland soils had amylase, protease and lipase activities.

Nitrogen Balance in Paddy Soil of Control-Release Fertilizer Application (완효성비료 시용 논 토양중의 질소행동에 관한 연구)

  • Lee, Kyeong-Bo;Park, Chan-Won;Park, Kwang-Lai;Kim, Jong-Gu;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.157-163
    • /
    • 2005
  • The increasing of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. Particularly, nitrogen fertilization considerably influences rice productivity and agricultural environments. This experiment was conducted to study transformation of nitrogen and to determine the primary yield components responsible for yield differences in paddy soil. $NH_4-N$ concentration of NPK plot in surface water of paddy soil was $2.07mg\;L^{-1}$ at 5 days after transplanting, and then was decreased sharply due to rice absorption and loss to environment. $NO_3-N$ concentration of NPK plot in surface water was $3.97mg\;L^{-1}$ at 10 days after transplanting. $NO_3-N$ concentration range of CRF plot in surface water was $3-5mg\;L^{-1}$ at 30th after transplanting. The accumulation of $NH_3$ volatilization in NPK plot was $22.39kg\;ha^{-1}$, which accounted for 20% of N fertilizer applied but using of CRF fertilizer can reduce $NH_3$ volatilization by 67% in paddy soil. Use efficiency of N fertilizer was not different between CRF70% and CRF100% plot. Rate of N use efficiency were 27.4%, 51.2%, 49.0% in paddy field NPK, CRF70% and CRF100% plots respectively. The yield of CRF70% showed the best effect with 9.3% increase production ratio, compare with NPK plot.