• Title/Summary/Keyword: NPC-Level Inverter

Search Result 119, Processing Time 0.026 seconds

The Output Characteristics Analysis by Cut-off Frequency Set-up of the LCR Filter on NPC Multi-Level Inverter with Trap-Filter (트랩필터를 갖는 NPC멀티레벨 인버터의 LCR필터 차단주파수 설정에 따른 출력특성 분석)

  • Kim, Soo-Hong;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.892-897
    • /
    • 2007
  • This paper presents the output filter design and the output characteristic analysis by cut-off frequency set up of the LCR filter on NPC multi-level inverter with trap-filter. The single-phase NPC three-level inverter operates at low switching frequency. The proposed LC trap filter is comprised of a conventional LCR output filter, by using LC trap filter the need for high damping resistor and low LC cut-off frequency is eliminated. Also. low damping resistor is increased the output filter system. The multilevel inverter system used NPC type inverter in proper system for high power application and controller is used DSP(TMS320C31). The effectiveness of proposed system confirmed the validity through SPICE simulation and experimental results.

Convenient Thermal Modeling for Loss Distribution method of 3-Level Active NPC Inverter using Newton's Law of cooling (Active NPC 인버터의 손실 분배 제어를 위한 뉴턴의 냉각법칙 기반의 간단한 열 모델링 기법)

  • Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.71-80
    • /
    • 2015
  • This paper proposes a convenient thermal modeling method for loss distribution control method of 3-level Active NPC(Neutral Point Clamped) inverter. In the drawback of conventional 3-level NPC, the generated losses can occur unbalance in each switching device, as a result, thermal utilization of designed system has been decreased. In order to compensate unbalanced losses, Active NPC inverter performed loss balancing control with thermal modeling during operation of each switching device. Therefore, this paper deals with a convenient thermal modeling method based on newton's law of cooling rather than conventional thermal modeling method. Both simulation and experimental results based on 10kW 3-level Active NPC inverter confirm the validity of the analysis performed in the study.

A Study on Operation Algorithm of Grid-Connected 3-Level NPC Inverter Considering Common-Mode Voltage and THD (공통 모드 전압 및 THD를 고려한 계통연계형 3레벨 NPC 인버터의 운용 알고리즘 연구)

  • Hye-Cheon Kim;Jung-Wook Park
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • A grid-connected 3-level NPC inverter is a power conversion device that connects renewable energy generators, such as photovoltaic or wind turbines to the grid. Although many studies have focused on this inverter, commercializing it requires strictly satisfying various safety and power quality-related standards. Among many standards, leakage current and grid current total harmonic distortion(THD) can be affected by external factors such as installation environment, aging, and grid conditions. Hence, inverter operations that can satisfy these standards need to be explored. In this study a 3-level NPC inverter operation algorithm using the Phase Opposition Disposition-PWM method that can effectively reduce leakage current and switching frequency adjustment to reduce THD effectively has been proposed.

A New Switching Method for Reducing switch loss of Single-phase three-level NPC inverter (스위치 손실 감소를 위한 단상 3레벨 NPC 인버터의 새로운 스위칭 방법)

  • Lee, Seung-Joo;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.268-275
    • /
    • 2015
  • This paper proposes a method of switching to improve power loss for the single-phase three-level NPC inverter. The conventional switching methods, which are called as the bipolar and unipolar switching methods, are used for single phase inverters using three-level topology. However, these switching method have disadvantage in the power loss. Because all of the switch are operated. To reduce the power loss of the three-level NPC inverter, clamp switching method is introduced in this paper. This way, one of the lag is fixed that switching loss is reduced. This paper analyzes and compares power losses of unipolar method and clamp method. The validity of the power loss analysis is verified through the simulation and experimental results.

A Method to Compensate the Distorted Space Vectors in the Unbalanced Neutral Point Voltage of 3-level NPC PWM Inverters

  • Hyun, Seung-Wook;Hong, Seok-Jin;Lee, Jung-Hyo;Lee, Chun-Bok;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.455-463
    • /
    • 2016
  • This paper proposes a compensation method to improve the distorted space vectors when a 3-level Neutral Point Clamped (NPC) inverter has an unbalanced neutral point voltage. Since both the neutral point voltage of the DC link and the space vector of a 3-level NPC inverter are closely related depending on the output load connecting state, a distorted space vector can occur when the neutral point voltage of a 3-level NPC inverter is unbalanced. The proposed method can improve the distorted space vectors by adjusting the injection time of the small and medium vectors and by modulating the amplitude of the carrier waveforms. In this paper, the proposed method is verified by both simulation and experimental results based on a 3-level NPC inverter.

Simple Compensation Method of Unclamped Switch Voltages in a Three-Level NPC Inverter (3-레벨 NPC 인버터에서 클램핑되지 않는 스위치 전압의 간단한 보상기법)

  • Ji, Kyun-Seon;Jou, Sung-Tak;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.257-265
    • /
    • 2014
  • This paper proposes a simple compensation method for switches of the unclamped voltage in the three-level NPC inverter. Voltages of inner-switches can be unclamped in the three-level NPC (neutral point clamped) inverter. It can cause the problem of the switch fault accident. By adding a capacitor, switches of the unclamped voltage can be clamped. Through the analysis of the circuit, the reason behind switches being unclamped was verified which leads to the solution method that designs a compensation capacitor. The proposed method was validated through the simulation and experimental results.

LC Trap Filter Design of Single Phase NPC Multi-Level PWM Inverters for Harmonic Reduction (고조파 저감을 위한 단상 NPC 멀티레벨 PWM 인버터의 LC트랩 필터 설계)

  • Kim, Yoon-Ho;Lee, Jae-Hak;Kim, Soo-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.313-320
    • /
    • 2006
  • In this paper, a design approach of LC trap filter for output side harmonic reduction of single phase NPC multilevel inverter is proposed, and THD of the output voltage and harmonic FFT of the output current are analyzed. The proposed filter consists of a conventional LCR filter cascaded with an LC trap filter and it is tuned to inverter switching frequency. A NPC multilevel inverter inverter is used an inverter system for high power application and DSP(TMS320C31) is used for the controller. The effectiveness of the proposed system confirmed through simulation and experimental results.

Simulation of 3-Level NPC Inverter using Co-simulation of LabVIEW and Multisim (LabVIEW와 Multisim의 Co-simulation을 이용한 3-Level NPC Inverter의 시뮬레이션)

  • Kim, Sun-Tae;Ji, Jun-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.546-547
    • /
    • 2014
  • 본 논문에서는 LabVIEW와 Multisim을 이용한 Co-simultion 기능으로 얻은 시뮬레이션 결과와 그 과정을 기술한다. 3-Level NPC Inverter를 제어하였으며 동일한 조건에서 PSIM으로 시뮬레이션한 결과와 비교하여 보았다.

  • PDF

Fault Diagnosis and Neutral Point Voltage Control Under the Switch Fault in NPC 3-Level Voltage Source Inverter (NPC 3-레벨 인버터의 스위치 고장시 고장 진단과 중성점 불평형 전압 제어)

  • Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok;Son Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.231-237
    • /
    • 2005
  • Many conventional multi-level inverters have detected switching faults by using the over voltage and current. However, fault detection of the switching elements is very difficult because the voltage and current due to each switching fault decrease more than the normal operation. Moreover, the dc-link unbalancing voltage causes a serious problem in the safety and reliability of system when the 3-level inverter faults occur Therefore, this paper proposes the simple fault diagnose method and the neutral-point-voltage control method that can protect the 3-level inverter system from the unbalancing voltage of the do-link capacitors when the faults of switching elements occur in the 3-level inverter that is very efficient in ac motor drives of the high voltage and high power applications. Through experiment results, the validity of the proposed method is demonstrated.

A Generalized Loss Analysis Algorithm of Power Semiconductor Devices in Multilevel NPC Inverters

  • Alemi, Payam;Lee, Dong-Choon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2168-2180
    • /
    • 2014
  • In this paper, a generalized power loss algorithm for multilevel neutral-point clamped (NPC) PWM inverters is presented, which is applicable to any level number of multilevel inverters. In the case of three-level inverters, the conduction loss depends on the MI (modulation index) and the PF (power factor), and the switching loss depends on a switching frequency, turn-on and turn-off energy. However, in the higher level of inverters than the three-level, the loss of semiconductor devices cannot be analyzed by conventional methods. The modulation depth should be considered in addition, to find the different conducting devices depending on the MI. In a case study, the power loss analysis for the three- and five-level NPC inverters has been performed with the proposed algorithm. The validity of the proposed algorithm is verified by simulation for the three-and five-level NPC inverters and experiment for three-level NPC inverter.