• Title/Summary/Keyword: NPC three-level

Search Result 100, Processing Time 0.021 seconds

Three-level Inverter Direct Torque Control of Induction Motor Based on Virtual Vectors

  • Tan Zhuohui;Li Yongdong;Hu Hu;Li Min;Chen Jie
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.369-373
    • /
    • 2001
  • Multilevel inverter has attracted great interest in high-voltage high-power field because of its less distorted output. In this paper, a direct torque control (DTC) technique based on a three-level neutral-point-clamped (NPC) inverter is presented. In order to solve the intrinsic neutral-point voltage-balancing problem and to obtain a high performance DTC, a special vector selection method is introduced and the concept of virtual vector is developed. By using the proposed PWM strategy, a MRAS speed sensor-less DTC drive can be achieved without sensing the neutral-point voltage, The strategy can be verified by simulation and experimental results.

  • PDF

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

Comparative performance evaluation of 10kV IGCTs in 3L NPC and ANPC Converter in PMSG MV Wind Turbines (PMSG 풍력발전기용 3L NPC와 ANPC 컨버터에서의 10kV IGCT 성능 비교 평가)

  • Lyngdoh, Amreena Lama;Suh, Youngsug;Park, Byoung-Gun;Kim, Jiwon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.86-88
    • /
    • 2018
  • The three level(3L) neutral point clamped (NPC) voltage source converter (VSC) topology is widely used for grid interface in high power wind energy due to its superior performance as compared to the two level(2L) VS. However, one of the major drawbacks of this topology is the unequal dispersion of loss and therefore the junction temperature among the power devices. The 3L ANPC topology derived from the NPC topology was proposed to resolve this drawback of unequal loss profile of 3L NPC. The 3L ANPC can work under various switching strategies. In this paper a comparative study of the various switching strategies of 3L ANPC using the recently developed 10kV IGCTs which has the capability to raise the current and voltage rating of the wind turbines is carried out. The comparison is performed using ABB make 10kV IGCT 5SHY17L9000 and PLECs simulations.

  • PDF

Comparative Performance Evaluation of 10kV IGCTs in 3L ANPC and TNPC Converters in PMSG MV Wind Turbines (PMSG 풍력발전기용 3L ANPC와 TNPC 컨버터에서의 10kV IGCT 성능 비교 평가)

  • Lyngdoh, Amreena Lama;Suh, Yongsug;Park, Byoung-Gun;Kim, Jiwon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.419-427
    • /
    • 2019
  • Several multilevel converter topologies have been proposed and compared. The three-level (3L) neutral-point-clamped (NPC) topology is promising and widely accepted. However, this topology suffers from uneven loss distribution among switches due to its fixed switching strategy. The 3L active NPC (ANPC) topology, which exhibits improved loss distribution profile, was proposed to address this disadvantage. The 3L T-NPC topology, a hybrid configuration of 2L and 3L NPC topologies, was introduced to address not only the loss distribution problem but also the reduction in the number of switches. In the present research, the application of these three topologies in PMSG-based medium-voltage wind turbines was investigated. The power devices considered were 10 kV IGCTs. Performance was evaluated in terms of a power loss of 10 kV IGCT for each NPC topology, which is a crucial indicator of thermal behavior, reliability, cost, and lifetime of any converter. The comparison was performed using ABB make 10 kV IGCT 5SHY17L9000 and the simulation tool PLECS.

Zero-Current Phenomena Analysis of the Single IGBT Open Circuit Faults in Two-Level and Three-Level SVGs

  • Wang, Ke;Zhao, Hong-Lu;Tang, Yi;Zhang, Xiao;Zhang, Chuan-Jin
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.627-639
    • /
    • 2018
  • The fact that the reliability of IGBTs has become a more and more significant aspect of power converters has resulted in an increase in the research on the open circuit (OC) fault location of IGBTs. When an OC fault occurs, a zero-current phenomena exists and frequently appears, which can be found in a lot of the existing literature. In fact, fault variables have a very high correlation with the zero-current interval. In some cases, zero-current interval actually decides the most significant fault feature. However, very few of the previous studies really explain or prove the zero-current phenomena of the fault current. In this paper, the zero-current phenomena is explained and verified through mathematical derivation, based on two-level and three-level NPC static var generators (SVGs). Mathematical models of single OC fault are deduced and it is concluded that a zero-current interval with a certain length follows the OC faults for both two-level and NPC three-level SVGs. Both inductive and capacitive reactive power situations are considered. The unbalanced load situation is discussed. In addition, simulation and experimental results are presented to verify the correctness of the theoretical analysis.

A Study on the Output Noise Reduction of 3-Phase 3-Level Inverter (3상 NPC 3레벨 인버터 출력노이즈 저감에 관한 연구)

  • Kim, Soo-Hong;Jin, Kang-Hwan;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Since they use the low switching frequency in multilevel inverter systems, they generate the high low frequency harmonic components. Generally, LC filter is used at the output terminal of inverter systems to solve this problem. But it causes a voltage drop at the output terminal by use of damping resistors, and causes the problem in which system efficiency decreases due to power loss of the damping resistor. In this paper, we proposed an output filter design method for NPC three-level inverter systems with low switching frequency. And we analyzed the efficiency of the proposed filter system, and the effectiveness of the proposed system is verified by simulation and experimental results.

DSVPWM Method for Improving the Efficiency of Three-phase Three Level NPC & T-type Inverter (삼상 3레벨 NPC 인버터와 T-type 인버터의 효율개선을 위한 DSVPWMx 적용 및 해석)

  • Shin, Hyunjin;Park, Juyoung;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.113-114
    • /
    • 2014
  • 대용량 분산 발전원이 증가하면서 이러한 대용량 분산 발전을 효율적으로 운전하기 위한 많은 연구가 진행되고 있다. 본 논문에서는 멀티레벨 인버터 토폴로지 중 3L-NPC와 3L-T-type 인버터에 DSVPWMx(DSVPWMP, DSVPWMN, DSVPWMPN0, DSVPWMPN1, DSVPWMPN2, DSVPWMPN3)를 적용하였을 때 두 개의 멀티레벨 인버터에서 발생하는 효율의 차이를 비교하였다. 이를 검증하기 위한 방법으로 Psim Thermal Module을 활용하여 회로를 구성하고 각 PWM방식에서 전압변조비에 따른 효율을 비교 분석하였다.

  • PDF

Modeling and Control of Three-Level Neutral-Point-Clamped Inverter with a LCL Filter Under Unbalanced Three-Phase Voltage Supply Conditions. (불평형 계통 조건하에 LCL 필터를 사용한 계통 연계형 3레벨 NPC 인버터의 모델링 및 제어.)

  • Yoo, Yong-ho;Koo, Nam-Joon;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.205-206
    • /
    • 2014
  • 본 논문은 불평형 계통 조건하에 LCL필터를 사용한 3레벨 NPC 인버터의 모델링과 정지 좌표계에서 전류의 정상분과 역상분을 동시에 제어하여 인버터 시스템을 안정적으로 동작시키는 방법을 제안한다. 또한 본 논문은 NPC 인버터가 가지는 태생적인 문제점인 중성점 전압 밸런싱 문제를 간단히 계산 된 옵셋전압을 이용하여 해결한다. 제안된 방법은 시뮬레이션 결과를 통하여 타당성을 검증하였다.

  • PDF

DSVPWM Method for Efficiency Improving and Neutral Point Voltage Control of Three-phase Three Level NPC and T-type Inverter (삼상 3레벨 NPC 인버터와 T-type 인버터의 효율개선 및 중성점 제어를 위한 DSVPWMx 적용 및 해석)

  • Park, Juyoung;Park, Jonghoon;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.57-58
    • /
    • 2015
  • 대용량 분산 발전원이 증가하면서 이러한 대용량 분산 발전을 효율적으로 운전하기 위한 많은 연구가 진행되고 있다. 본 논문에서는 멀티레벨 인버터 토폴로지 중 NPC와 T-type 인버터의 중성점 전압제어와, DSVPWMx(Discontinuous Space Vector Pulse Width Modulation) 방식을 적용하여 두 개의 멀티레벨 인버터에서 발생하는 효율과 제어방식의 차이를 시뮬레이션 하였다.

  • PDF

Predictive Control of the Neutral Point Voltage in the Three-Level NPC Inverter (3-레벨 NPC 인버터에서 중성점 전압의 예측 제어)

  • Ko, Yoon Hyuk;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.356-357
    • /
    • 2011
  • 3-레벨 중성점 다이오드 클램프 (NPC) 인버터는 우수한 토폴로지로 알려져 있지만 구조적으로 중성점 전위가 변동하는 문제가 내제하고 있다. 본 논문에서는 3-레벨 NPC 인버터 중 성점 전압의 변동을 제어하기 위해 중성점 전류의 예측을 활용한 간단한 제어 기술이 제안되었다. 제안된 방법은 한 샘플링 앞선 시점의 중성점 전류를 예측하고 중성점 평형 요소를 포함하는 오프셋 전압(Voffset)을 이용하여 중성점 전압을 제어 한다. 중성점 전위 변동은 간단히 제어할 수 있고 제안된 중성점 전압 제어의 유효함은 시뮬레이션 결과를 통해 입증하였다.

  • PDF