• Title/Summary/Keyword: NP-Hard Problem

Search Result 367, Processing Time 0.022 seconds

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Multiple Path Based Vehicle Routing in Dynamic and Stochastic Transportation Networks

  • Park, Dong-joo
    • Proceedings of the KOR-KST Conference
    • /
    • 2000.02a
    • /
    • pp.25-47
    • /
    • 2000
  • In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.

  • PDF

Content-Aware D2D Caching for Reducing Visiting Latency in Virtualized Cellular Networks

  • Sun, Guolin;Al-Ward, Hisham;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.514-535
    • /
    • 2019
  • Information-centric networks operate under the assumption that all network components have built-in caching capabilities. Integrating the caching strategies of information centric networking (ICN) with wireless virtualization improves the gain of virtual infrastructure content caching. In this paper, we propose a framework for software-defined information centric virtualized wireless device-to-device (D2D) networks. Enabling D2D communications in virtualized ICN increases the spectral efficiency due to reuse and proximity gains while the software-defined network (SDN) as a platform also simplifies the computational overhead. In this framework, we propose a joint virtual resource and cache allocation solution for latency-sensitive applications in the next-generation cellular networks. As the formulated problem is NP-hard, we design low-complexity heuristic algorithms which are intuitive and efficient. In our proposed framework, different services can share a pool of infrastructure items. We evaluate our proposed framework and algorithm through extensive simulations. The results demonstrate significant improvements in terms of visiting latency, end user QoE, InP resource utilization and MVNO utility gain.

Improved approach of calculating the same shape in graph mining (그래프 마이닝에서 그래프 동형판단연산의 향상기법)

  • No, Young-Sang;Yun, Un-Il;Kim, Myung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.251-258
    • /
    • 2009
  • Data mining is a method that extract useful knowledges from huge size of data. Recently, a focussing research part of data mining is to find interesting patterns in graph databases. More efficient methods have been proposed in graph mining. However, graph analysis methods are in NP-hard problem. Graph pattern mining based on pattern growth method is to find complete set of patterns satisfying certain property through extending graph pattern edge by edge with avoiding generation of duplicated patterns. This paper suggests an efficient approach of reducing computing time of pattern growth method through pattern growth's property that similar patterns cause similar tasks. we suggest pruning methods which reduce search space. Based on extensive performance study, we discuss the results and the future works.

Optimal Solution of a Large-scale Travelling Salesman Problem applying DNN and k-opt (DNN과 k-opt를 적용한 대규모 외판원 문제의 최적 해법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.249-257
    • /
    • 2015
  • This paper introduces a heuristic algorithm to NP-hard travelling salesman problem. The proposed algorithm, in its bid to determine initial path, applies SW-DNN, DW-DNN, and DC-DNN, which are modified forms of the prevalent Double-sided Nearest Neighbor Search and searches the minimum value. As a part of its optimization process on the initial solution, it employs 2, 2.5, 3-opt of a local search k-opt on candidate delete edges and 4-opt on undeleted ones among them. When tested on TSP-1 of 26 European cities and TSP-2 of 49 U.S. cities, the proposed algorithm has successfully obtained optimal results in both, disproving the prevalent disbelief in the attainability of the optimal solution and making itself available as a general algorithm for the travelling salesman problem.

Constrained Relay Node Deployment using an improved multi-objective Artificial Bee Colony in Wireless Sensor Networks

  • Yu, Wenjie;Li, Xunbo;Li, Xiang;Zeng, Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2889-2909
    • /
    • 2017
  • Wireless sensor networks (WSNs) have attracted lots of attention in recent years due to their potential for various applications. In this paper, we seek how to efficiently deploy relay nodes into traditional static WSNs with constrained locations, aiming to satisfy specific requirements of the industry, such as average energy consumption and average network reliability. This constrained relay node deployment problem (CRNDP) is known as NP-hard optimization problem in the literature. We consider addressing this multi-objective (MO) optimization problem with an improved Artificial Bee Colony (ABC) algorithm with a linear local search (MOABCLLS), which is an extension of an improved ABC and applies two strategies of MO optimization. In order to verify the effectiveness of the MOABCLLS, two versions of MO ABC, two additional standard genetic algorithms, NSGA-II and SPEA2, and two different MO trajectory algorithms are included for comparison. We employ these metaheuristics on a test data set obtained from the literature. For an in-depth analysis of the behavior of the MOABCLLS compared to traditional methodologies, a statistical procedure is utilized to analyze the results. After studying the results, it is concluded that constrained relay node deployment using the MOABCLLS outperforms the performance of the other algorithms, based on two MO quality metrics: hypervolume and coverage of two sets.

Joint Mode Selection and Resource Allocation for Mobile Relay-Aided Device-to-Device Communication

  • Tang, Rui;Zhao, Jihong;Qu, Hua;Zhu, Zhengcang;Zhang, Yanpeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.950-975
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying cellular networks is a promising add-on component for future radio communication systems. It provides more access opportunities for local device pairs and enhances system throughput (ST), especially when mobile relays (MR) are further enabled to facilitate D2D links when the channel condition of their desired links is unfavorable. However, mutual interference is inevitable due to spectral reuse, and moreover, selecting a suitable transmission mode to benefit the correlated resource allocation (RA) is another difficult problem. We aim to optimize ST of the hybrid system via joint consideration of mode selection (MS) and RA, which includes admission control (AC), power control (PC), channel assignment (CA) and relay selection (RS). However, the original problem is generally NP-hard; therefore, we decompose it into two parts where a hierarchical structure exists: (i) PC is mode-dependent, but its optimality can be perfectly addressed for any given mode with additional AC design to achieve individual quality-of-service requirements. (ii) Based on that optimality, the joint design of MS, CA and RS can be viewed from the graph perspective and transferred into the maximum weighted independent set problem, which is then approximated by our greedy algorithm in polynomial-time. Thanks to the numerical results, we elucidate the efficacy of our mechanism and observe a resulting gain in MR-aided D2D communication.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

Two-Agent Single-Machine Scheduling with Linear Job-Dependent Position-Based Learning Effects (작업 종속 및 위치기반 선형학습효과를 갖는 2-에이전트 단일기계 스케줄링)

  • Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.169-180
    • /
    • 2015
  • Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature, where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms using different methods to generate the initial population and two crossover operations. Computational results show that the proposed algorithms are efficient to obtain near-optimal solutions.

A Heuristic for Service-Parts Lot-Sizing with Disassembly Option (분해옵션 포함 서비스부품 로트사이징 휴리스틱)

  • Jang, Jin-Myeong;Kim, Hwa-Joong;Son, Dong-Hoon;Lee, Dong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.24-35
    • /
    • 2021
  • Due to increasing awareness on the treatment of end-of-use/life products, disassembly has been a fast-growing research area of interest for many researchers over recent decades. This paper introduces a novel lot-sizing problem that has not been studied in the literature, which is the service-parts lot-sizing with disassembly option. The disassembly option implies that the demands of service parts can be fulfilled by newly manufactured parts, but also by disassembled parts. The disassembled parts are the ones recovered after the disassembly of end-of-use/life products. The objective of the considered problem is to maximize the total profit, i.e., the revenue of selling the service parts minus the total cost of the fixed setup, production, disassembly, inventory holding, and disposal over a planning horizon. This paper proves that the single-period version of the considered problem is NP-hard and suggests a heuristic by combining a simulated annealing algorithm and a linear-programming relaxation. Computational experiment results show that the heuristic generates near-optimal solutions within reasonable computation time, which implies that the heuristic is a viable optimization tool for the service parts inventory management. In addition, sensitivity analyses indicate that deciding an appropriate price of disassembled parts and an appropriate collection amount of EOLs are very important for sustainable service parts systems.