• Title/Summary/Keyword: NP-Hard Problem

Search Result 367, Processing Time 0.025 seconds

A Study for searching optimized combination of Spent light water reactor fuel to reuse as heavy water reactor fuel by using evolutionary algorithm (진화 알고리즘을 이용한 경수로 폐연료의 중수로 재사용을 위한 최적 조합 탐색에 관한 연구)

  • 안종일;정경숙;정태충
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1997
  • These papers propose an evolutionary algorithm for re-using output of waste fuel of light water reactor system in nuclear power plants. Evolutionary algorithm is useful for optimization of the large space problem. The wastes contain several re-useable elements, and they should be carefully selected and blended to satisfy requirements as input material to the heavy water nuclear reactor system. This problem belongs to a NP-hard like the 0/1 Knapsack problem. Two evolutionary strategies are used as a, pp.oximation algorithms in the highly constrained combinatorial optimization problem. One is the traditional strategy, using random operator with evaluation function, and the other is heuristic based search that uses the vector operator reducing between goal and current status. We also show the method, which performs the feasible teat and solution evaluation by using the vectorized data in problem. Finally, We compare the simulation results of using random operator and vector operator for such combinatorial optimization problems.

  • PDF

Development of evolutionary algorithm for determining the k most vital arcs in shortest path problem

  • Chung, Hoyeon;Shin, Dongju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.113-116
    • /
    • 2000
  • The purpose of this study is to present a method for determining the k most vital arcs in shortest path problem using an evolutionary algorithm. The problem of finding the k most vital arcs in shortest path problem is to find a set of k arcs whose simultaneous removal from the network causes the greatest increase in the total length of shortest path. The problem determining the k most vital arcs in shortest path problem has known as NP-hard. Therefore, in order to deal with the problem of real world the heuristic algorithm is needed. In this study we propose to the method of finding the k-MVA in shortest path problem using an evolutionary algorithm which known as the most efficient algorithm among heuristics. For this, the expression method of individuals compatible with the characteristics of shortest path problem, the parameter values of constitution gene, size of the initial population, crossover rate and mutation rate etc. are specified and then the effective genetic algorithm will be proposed. The method presented in this study is developed using the library of the evolutionary algorithm framework (EAF) and then the performance of algorithm is analyzed through the computer experiment.

  • PDF

Scheduling Algorithm, Based on Reinforcement Learning for Minimizing Total Tardiness in Unrelated Parallel Machines (이종 병렬설비에서 총납기지연 최소화를 위한 강화학습 기반 일정계획 알고리즘)

  • Tehie Lee;Jae-Gon Kim;Woo-Sik Yoo
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.131-140
    • /
    • 2023
  • This paper proposes an algorithm for the Unrelated Parallel Machine Scheduling Problem(UPMSP) without setup times, aiming to minimize total tardiness. As an NP-hard problem, the UPMSP is hard to get an optimal solution. Consequently, practical scenarios are solved by relying on operator's experiences or simple heuristic approaches. The proposed algorithm has adapted two methods: a policy network method, based on Transformer to compute the correlation between individual jobs and machines, and another method to train the network with a reinforcement learning algorithm based on the REINFORCE with Baseline algorithm. The proposed algorithm was evaluated on randomly generated problems and the results were compared with those obtained using CPLEX, as well as three scheduling algorithms. This paper confirms that the proposed algorithm outperforms the comparison algorithms, as evidenced by the test results.

Complexity and Algorithms for Optimal Bundle Search Problem with Pairwise Discount

  • Chung, Jibok;Choi, Byungcheon
    • Journal of Distribution Science
    • /
    • v.15 no.7
    • /
    • pp.35-41
    • /
    • 2017
  • Purpose - A product bundling is a marketing approach where multiple products or components are packaged together into one bundle solution. This paper aims to introduce an optimal bundle search problem (hereinafter called "OBSP") which may be embedded with online recommendation system to provide an optimized service considering pairwise discount and delivery cost. Research design, data, and methodology - Online retailers have their own discount policy and it is time consuming for online shoppers to find an optimal bundle. Unlike an online system recommending one item for each search, the OBSP considers multiple items for each search. We propose a mathematical formulation with numerical example for the OBSP and analyzed the complexity of the problem. Results - We provide two results from the complexity analysis. In general case, the OBSP belongs to strongly NP-Hard which means the difficulty of the problem while the special case of OBSP can be solved within polynomial time by transforming the OBSP into the minimum weighted perfect matching problem. Conclusions - In this paper, we propose the OBSP to provide a customized service considering bundling price and delivery cost. The results of research will be embedded with an online recommendation system to help customers for easy and smart online shopping.

An Optimal Algorithm for the Sensor Location Problem to Cover Sensor Networks

  • Kim Hee-Seon;Park Sung-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.17-24
    • /
    • 2006
  • We consider the sensor location problem (SLP) on a given sensor field. We present the sensor field as grid of points. There are several types of sensors which have different detection ranges and costs. If a sensor is placed in some point, the points inside of its detection range can be covered. The coverage ratio decreases with distance. The problem we consider in this thesis is called multiple-type differential coverage sensor location problem (MDSLP). MDSLP is more realistic than SLP. The coverage quantities of points are different with their distance form sensor location in MDSLP. The objective of MDSLP is to minimize total sensor costs while covering every sensor field. This problem is known as NP-hard. We propose a new integer programming formulation of the problem. In comparison with the previous models, the new model has a smaller number of constraints and variables. This problem has symmetric structure in its solutions. This group is used for pruning in the branch-and-bound tree. We solved this problem by branch-and-cut(B&C) approach. We tested our algorithm on about 60 instances with varying sizes.

  • PDF

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

Production Scheduling for a Two-machine Flow Shop with a Batch Processing Machine (배치처리기계를 포함하는 두 단계 흐름생산라인의 일정계획)

  • Koh, Shie-Gheun;Koo, Pyung-Hoi;Kim, Byung-Nam
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.481-488
    • /
    • 2008
  • This paper deals with a scheduling problem for two-machine flow shop, in which the preceding machine is a batch processing machine that can process a number of jobs simultaneously. To minimize makespan of the system, we present a mixed integer linear programming formulation for the problem, and using this formulation, it is shown that an optimal solution for small problem can be obtained by a commercial optimization software. However, since the problem is NP-hard and the size of a real problem is very large, we propose a number of heuristic algorithms including genetic algorithm to solve practical big-sized problems in a reasonable computational time. To verify performances of the algorithms, we compare them with lower bound for the problem. From the results of these computational experiments, some of the heuristic algorithms show very good performances for the problem.

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

Balancing Problem of Cross-over U-shaped Assembly Line Using Bi-directional Clustering Algorithm (양방향 군집 알고리즘을 적용한 교차혼합 U자형 조립라인 균형문제)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.89-96
    • /
    • 2022
  • This paper suggests heuristic algorithm for single-model cross-over assembly line balancing problem that is a kind of NP-hard problem. The assembly line balance problem is mainly applied with metaheuristic methods, and no algorithm has been proposed to find the exact solution of polynomial time, making it very difficult to apply in practice. The proposed bi-directional clustering algorithm computes the minimum number of worker m* = ⌈W/c⌉ and goal cycle time c* = ⌈W/m*⌉ from the given total assembling time W and cycle time c. Then we assign each workstation i=1,2,…,m* to Ti=c* ±α≤ c using bi-directional clustering method. For 7 experimental data, this bi-directional clustering algorithm same performance as other methods.

Parallel Clustering Algorithm for Balancing Problem of a Two-sided Assembly Line (양측 조립라인 균형문제의 병렬군집 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.95-101
    • /
    • 2022
  • The two-sided assembly line balancing problem is a kind of NP-hard problem. This problem primarily can be solved metaheuristic method. This paper suggests parallel clustering algorithm that each left and right-sided workstation assigned by operations with Ti = c* ± α < c, c* = ${\lceil}$W/m*${\rceil}$ such that M* = ${\lceil}$W/c${\rceil}$ for precedence diagram of two-sided assembly line with total complete time W and cycle time c. This clustering performs forward direction from left to right or reverse direction from right to left. For the 4 experimental data with 17 cycle times, the proposed algorithm can be obtain the minimum number of workstations m* and can be reduce the cycle time to Tmax < c then metaheuristic methods. Also, proposed clustering algorithm maximizes the line efficiency and minimizes the variance between workers operation times.