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Abstract  
 
We consider the sensor location problem (SLP) on a 

given sensor field. We present the sensor field as grid 
of points. There are several types of sensors which have 
different detection ranges and costs. If a sensor is 
placed in some point, the points inside of its detection 
range can be covered. The coverage ratio decreases 
with distance.  
The problem we consider in this thesis is called 

multiple-type differential coverage sensor location 
problem (MDSLP). MDSLP is more realistic than SLP. 
The coverage quantities of points are different with 
their distance form sensor location in MDSLP. The 
objective of MDSLP is to minimize total sensor costs 
while covering every sensor field. This problem is 
known as NP-hard.  
We propose a new integer programming formulation 

of the problem. In comparison with the previous 
models, the new model has a smaller number of 
constraints and variables. This problem has symmetric 
structure in its solutions. This group is used for pruning 
in the branch-and-bound tree. We solved this problem 
by branch-and-cut(B&C) approach. We tested our 
algorithm on about 60 instances with varying sizes.  

 

1. Introduction 
 

The research issues in distributed networks are 
effective surveillance and environment monitoring. The 
monitoring and surveillance can be done with sensors, 
and the covered networks are called sensor networks. 
The covered areas are simply called sensor fields. If the 
sensor fields are predetermined, we can make a 
decision to choose the method that locates sensors to 
meet a certain quality of service requirement, such as 
surveillance [6], [7], target location [4], [5], [10], and 
target tracking. If the location of sensors is decided 
randomly, the deterioration of service quality is sure to 
result. This is the reason why we have to research the 
method of deployment of sensors.  
The sensor fields are covered by several different 

types of sensors, which are appropriately located in 
sensor networks. These sensors have different detection 
range and cost. The sensor can monitor the region 
which is the inside of its detection range. The cost of 
sensors increases with their detection range. Clearly, 
sensors which have longer detection range have higher 
cost. If we use only long-range sensors, the sum of total 
sensor costs may be too much expensive. On the 
contrary, if we use only short-range sensors, the 
effectiveness of the sensor network may not be 
achieved. Therefore, the efficient sensor location 
strategy is necessary to minimize total cost.  

The sensor networks can be deployed in two ways. 
The first one is a random placement. When the 
environment of sensor fields is unknown, this is the 
only choice. It is impossible to decide the optimal 
sensor locations, because we have no information about 
the sensor fields. Sensors are thrown to any place by 
aircrafts randomly. The second one is a grid-based 
placement. If the sensor fields are predetermined, we 
can use this way. The sensor fields are divided into 
grids. Sensors can be deployed at any grid points. If the 
number of grid points is infinitely large, we can regard 
the sensor fields as continuous fields. It is more 
realistic. This thesis focuses on this method.  
The problem in the sensor networks can be applied to 

many practical problems ([5], [6], [20]). Nevertheless, 
prior researches have ignored the sensor location issues. 
Most previous study has focused on efficient sensor 
communication ([8], [15]) and sensor fusion ([3], [14]) 
for a given sensor field. As the size of sensor networks 
is expanded and the number of sensors is increased, 
efficient deployment strategies is required.  
The sensor location problem (SLP) determines the 

number of sensors and the location of sensors to be 
selected to satisfy the service quality in a given area. K. 
Chakrabarty et al.[4] formulates SLP with grid-based 
placement in terms of cost minimization under 
coverage constraints. Frank Y.S. Lin et al.[10] presents 
a heuristic algorithm to SLP for target location. We 
consider the more realistic problem, which has 
differential coverage quantity. We call this problem as 
the multiple-type differential coverage sensor location 
problem (MDSLP). In SLP, the coverage quantities of 
points inside of detect range are one. In contrast, the 
coverage quantities of points are different with their 
distances from sensor location in MDSLP. In this thesis, 
we focus on MDSLP with grid-based placement. 
The thesis is organized as follows. Chapter 2 defines 

the problem. In chapter 3, we present mathematical 
formulations for two models of MDSLP. Chapter 4 
provides an algorithm for the problem. In chapter 5, we 
present computational results for the algorithm. Finally, 
we give concluding remarks in Chapter 6. 
 

2. Problem Description 
 

This chapter contains a detailed description of 
MDSLP (multiple-type differential coverage sensor 
location problem): input and output of MDSLP, 
assumptions, and objective function will be described. 

Inputs are as follows. 
• The size of sensor networks 
• The minimal sum of coverage quantity by sensors 
• The number of types of sensors 
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The sensor field is defined as a square. The size of 
sensor networks is the width (or length) of the sensor 
field. We represent the sensor field as a grid of points. 
So, the total number of grid points in the sensor field is 
the square of the size of sensor networks.  
Coverage can be considered as the measure of quality 
of service of a sensor network. Every grid point must 
be covered at least the minimal sum of coverage 
quantity by sensors. The available sensor types which 
can be appropriately placed in the sensor field are 
restricted. These sensors differ form each other in their 
detection ranges and costs. Figure 2-1 shows the types 
of sensors. 
 

Type A sensor
Detection range : 60m
Sensor cost : $4

Type B sensor
Detection range : 40m
Sensor cost : $3

Type C sensor
Detection range : 20m
Sensor cost : $2

Detection range
(10m between grid points)

Type A sensor
Detection range : 60m
Sensor cost : $4

Type B sensor
Detection range : 40m
Sensor cost : $3

Type C sensor
Detection range : 20m
Sensor cost : $2

Detection range
(10m between grid points)

 
Figure 2-1. The types of sensors 

 
Output is the assignment of sensors to grid points. 

When we solve MDSLP, we assume that the sensor 
networks consist of two-dimensional square sensor 
field which is presented as a grid of points. The size of 
sensor networks means the number of grid points in 
width (length) of the sensor field. The size of sensor 
networks in figure 2-1 is 6. It means that the width and 
length of the sensor field is 60m, and the sensor 
networks have an area of 3600 square meters. If a 
sensor is placed in some grid point, the points inside of 
its detection range can be covered. The coverage ratio 
decreases with distance between sensor and the target 
point. The sensor cost increases with its detection range.  

Our objective is to assign sensors for complete 
coverage of the sensor field with minimum total cost of 
sensors. 
 

3. Mathematical Formulation 
 

In this chapter, we introduce two formulations of the 
MDSLP. The first one is modified from the model 
proposed by [4] and [10]. The second one is the 
formulation we propose. 
 

3.1. Formulation 1 

The original formulation of the MDSLP was 
proposed by [4]. [10] presented another formulation 
with different objective function. Formulation 1 is 
modified from above two models. The following 
notation and decision variables are used in the 
formulation: 

 [ Notation ] 
HN  

 }1,...,1,0{N
 field,sensor   theofin width  points grid ofset  the

H −= u
 

VN  
 }1,...,1,0{

 field,sensor   theoflength in  points grid ofset  the
−= uNV

 

T   },...,1{ es,sensor typ ofset  the tT =  

u  
 fieldsensor 

  theof (length)in width  points grid ofnumber  the  

  

 

 [ decision variables ] 

 
Formulation can be constructed as follows. 

 

[ Formulation 1 ] 
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The objective (1) is to minimize the sum of sensor 

costs with complete coverage of the sensor field.  
Constraints (2) and (3) mean that sensor with range 
sr  placed on grid point ),( lk   can detect a target at 

grid point ),( ji  if the distance between these two grid 

points is less than sr . Constraints (4) mean that every 

grid point must be covered at least α . Constraints (5) 

represent that at most one sensor can be placed on a 
grid point. Constraints (6) are the binary conditions on 
the variables. 
  

3.2. Formulation 2 

In this section, we propose another integer 
programming formulation of MDSLP. Formulation 1 
has a large number of constraints and variables. To 
reduce the size of the model, we make new formulation. 
It has a smaller number of constraints and variables 
than the previous one. We remove constraints (2) and 
(3) in formulation 1. We use the new coefficient 
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s
lkji ),)(,(δ  instead of s

lkji ),)(,(γ . It contains the meaning of 

constraints (2) and (3). The decision variables in 
formulation 2 are only one kind of variable set that 
means the assignment of sensor at grid point.  
Notation and decision variables for new formulation 

are as follows: 
 

[ Notation ] 

HN

  }1,...,1,0{N
 field,sensor   theofin width  points grid ofset  the

H −= u
 

VN

  }1,...,1,0{
 field,sensor   theoflength in  points grid ofset  the

−= uNV
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u  
 fieldsensor 
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With above notation and decision variables, new 
formulation can be constructed as follows. 

  

[ Formulation 2 (MDSLP) ] 

Min ∑ ∑ ∑
∈ ∈ ∈Ts Ni Nj

s
ji

s

H V

xc ),(  (7) 
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∈ ∈ ∈Ts Ni Nj

s
ji

s
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H V
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 ∑
∈

≤
Ts

s
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}1,0{),( ∈s
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The objective function (7) means the sum of sensor 

costs for complete coverage of the sensor field is 
minimized. By constraints (8), every grid points can be 
covered by sensor at least minimal sum of coverage 
quantity by sensors α . Coefficient s

lkji ),)(,(δ  describes 

that a sensor always detects a target that lies within its 

range. That is, sensor with range sr  placed on grid 

point ),( lk   can detect a target at grid point ),( ji  if 

the distance between these two grid points is less than 

or equal to sr . Constraints (9) mean that at most one 
sensor should be placed on a grid point. Constraints 
(10) are the binary conditions on the variables. 
The sensor location problem (SLP) is NP-hard ([4]). 

This problem is restricted to the minimum-cost 

satisfiability problem, which is known as NP-hard 
([11],[23]). SLP is a special case of MDSLP. Therefore, 
MDSLP is NP-hard. (Frank Y.S. Lin et al.[05ieee]].  

 

4. Algorithm 
 

4.1. Overview 

The basic approach of algorithm of this thesis is 
branch-and-cut. Branch-and-cut is a branch-and-bound 
algorithm in which cutting planes are generated 
throughout the branch-and-bound tree. This algorithm 
has been widely used for large-scale mixed integer 
problem [1], [2], [9], [13], [21]. 
At first, we get an upper bound of MDSLP by 

heuristic algorithm. Then, we construct the initial 
formulation of LP0. LP0 is the LP relaxation of the 
initial IP formulation. After solving the LP0, we 
continue to find the valid inequalities (Gomory 
fractional cuts, cover inequalities or generalized upper 
bound (GUB) cover inequalities) which are violated by 
the current solution. If one violated inequality of these 
three kinds of inequalities is found, the valid inequality 
found in its separation algorithm formulation is added 
as cut to LP0 and no other separation algorithm is called. 
So we construct the next formulation, which is LP1. 
If we get LP1, we go through the same procedure as 

we do after the LP0 is obtained.  
After iterating this procedure, when no more valid 

inequalities can be found, we check if the solution 
obtained by solving the last LP, which is LPk, is integral. 
If we have obtained an integral solution, we are done 
with an optimal solution of MDSLP. Otherwise, we 
have to start the branch-and-cut procedure to find an 
optimal solution to the final formulation, LPk, which is 
also an optimal solution of MDSLP.  
 

LP0:LP relaxation of the initial IP, UB:upper bound of IP

Set L={LP0}, =incumz=UB, z=-M, incumx:empty

Is L empty?

Select and delete a problem LPi form L

zi > incumz?

Solve the LPi -> xi,zi

LPi infeas?

Is there a cut 

violated by xi?

zi incumz?

xi integral?

Branch into two subproblems LPj,LPk

Is LPj isomorphic 

with in L?

Incumx&incumz:opt.

If no incumx exist -> infeas.

STOP

Add cut to the constraint set

Incumz=zi, incumx=xi,=zi

Set zj=zi, add LPj to L

Set zk=zi, add LPk to L
Is LPk isomorphic 

with in L?

No

Yes

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

START

*: sufficiently large number

LP0:LP relaxation of the initial IP, UB:upper bound of IP

Set L={LP0}, =incumz=UB, z=-M, incumx:empty

Is L empty?

Select and delete a problem LPi form L

zi > incumz?

Solve the LPi -> xi,zi

LPi infeas?

Is there a cut 

violated by xi?

zi incumz?

xi integral?

Branch into two subproblems LPj,LPk

Is LPj isomorphic 

with in L?

Incumx&incumz:opt.

If no incumx exist -> infeas.

STOP

Add cut to the constraint set

Incumz=zi, incumx=xi,=zi

Set zj=zi, add LPj to L

Set zk=zi, add LPk to L
Is LPk isomorphic 

with in L?

No

Yes

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

LP0:LP relaxation of the initial IP, UB:upper bound of IP

Set L={LP0}, =incumz=UB, z=-M, incumx:empty

Is L empty?

Select and delete a problem LPi form L

zi > incumz?

Solve the LPi -> xi,zi

LPi infeas?

Is there a cut 

violated by xi?

zi incumz?

xi integral?

Branch into two subproblems LPj,LPk

Is LPj isomorphic 

with in L?

Incumx&incumz:opt.

If no incumx exist -> infeas.

STOP

Add cut to the constraint set

Incumz=zi, incumx=xi,=zi

Set zj=zi, add LPj to L

Set zk=zi, add LPk to L
Is LPk isomorphic 

with in L?

No

Yes

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

START

*: sufficiently large number

 
Figure 4-1. The overall procedure of the branch-and-cut         
  algorithm 
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MDSLP has a large symmetry group which has 8 
elements. These elements return the same solutions, so 
we consider one of them when we execute the branch-
and-cut procedure.  
The overall procedure of the algorithm to solve 

MDSLP is presented in Figure 4-1. 
 

4.2. Valid inequalities  
A valid inequality for an integer programming is an 

inequality that is satisfied by all feasible solutions. We 
are interested in valid inequalities, which are called cuts 
that are not included in the current formulation and are 
not satisfied by all feasible points to the LP relaxation. 
A violated cut is a cut that is not satisfied by the given 
optimal solution to the LP relaxation. If we find a 
violated cut, we can add it to the LP relaxation. Then 
we can tighten current formulation. The LP feasible 
region becomes smaller but the IP feasible region does 
not changed. Then we can resolve the LP and repeat the 
above procedure, if necessary, so long as we can 
continue to find violated cuts.  
 

4.2.1. Gomory fractional cuts 

Gomory fractional cuts are generated by applying 
integer rounding on a pivot row in the optimal LP 
tableau for a basic integer variable with a fractional 
solution value ([19]). 
Now, we denote the constraints 

}|{ bAxZxS n ≤∈= +  in equality form as 

}),(|{ bxIAZxS mnl =∈= +
+ . The original variables are 

),...,,( 21 nxxx  and the slack variables are 

),...,,( 21 mnnn xxx +++ . A  and b are an integral 

matrices. Suppose },..,1{ nN = , },..,1{ mM = , 

},..,{ 1 naaA = , and },..,{ 1 meeI = . We consider the 

linear combination of equations given by 

bxIA λλ =),( , where ),...,,( 21 mλλλλ =  is a weight 

vector. We define jj aa λ=  for Nj∈  and bb λ= . 

Then bxIA λλ =),(  can be written as 

bxxa
Mi

ini
Nj

jj =+ ∑∑
∈

+
∈

λ .  

 
Proposition 1. The inequality 

0fxgxf
Mi

ini
Nj

jj ≥+ ∑∑
∈

+
∈

                (11) 

is valid, where  jjj aaf −=  for Nj∈ , 

 iiig λλ −=  for Mi∈ , and  bbf −=0 . 

 

4.2.2. Cover cuts 

If a constraint takes the form of a knapsack 
constraint, then there is a minimal cover associated 
with the constraint. A minimal cover is a subset of the 
variables of the inequality such that if all the subset 
variables were set to one, the knapsack constraint 
would be violated, but if any one subset variable were 
excluded, the constraint would be satisfied.  

IP often has a row i  of the form i
Nj

jij bxa ≤∑
∈

. We 

assume without loss of generality that 0≥ija  for all 

Nj∈ . If not, we can complement the variables for 

which 0<ija . When we consider only row i , IP can 

be relaxed to a 0-1 knapsack problem, with the feasible 

region }|}1,0{{cov bxaxP
Nj

jj
Ner ≤∈= ∑

∈

. A set 

NC ⊂  is called a cover if ba
Cj

j∑
∈

> .  

Proposition 2. If NC ⊂  is a cover,  

1−≤∑
∈

Cx
Cj

j         (12) 

is a valid inequality. 
 
  In general, these inequalities are not facet-defining 

for erPcov , but they can be strengthened by a 
procedure called lifting ([12], [16], [19]). 
 

4.2.3. GUB cover cuts 

A GUB constraint for a set of binary variables is a 
sum of variables less than or equal to one. If the 
variables in a GUB constraint are included in a 
knapsack constraint, the minimal cover can be selected 
with the additional consideration that at most one of the 
members of the GUB constraint can be one in a 
solution.  
A GUB inequality is an inequality of the form 

1≤∑
∈Qj

jx , where NQ ⊂ . When IP contains a 

knapsack row i  and a set of GUB inequalities defined 

by disjoint sets NQk ⊂  for Kk∈ , we obtain a 

relaxation of IP with the feasible region 

}  1,|}1,0{{ ∑∑
∈∈

∈∀≤≤∈=
kQj

ji
Nj

jij
NGUB KkxbxaxP . A 

GUB cover GC  is a cover that obeys the GUB 

constraints, that is, no two elements of the cover belong 

to the same iQ .  

 

Proposition 3. For any GUB cover GC , the inequality 

 1−≤∑
∈

G
Cj

j Cx
G

                (13) 

is valid for GUBP .  
 
The lifting procedure of the GUB cover also leads to 

significant strengthening of this inequality ([12], [19]).  
 

4.3. Isomorphism pruning 

When we solve huge size of IP in a branch-and-cut 
framework, the number of branch nodes is large. 
However, these problems often have a large number of 
symmetries, and if we are not interested in equivalent 
solutions, we can simply ignore symmetric problems. 
This has the possibility of dramatically reducing the 
number of nodes that we need to consider in a branch-
and-bound tree ([17], [18], [22]).  
MDSLP has a large symmetry group. We consider 

the sensor field as a square. We have 8 isomorphic 
problems as the (aspect) direction of sight: the identity 

I , three rotations 27018090  , , RRR , the vertical 

symmetry V , the horizontal symmetry H , the 

symmetry along the main diagonal D , and the 

symmetry along the other diagonal 'D .  If we 
consider in an isomorphism-free branch-and-cut tree, 
we can reduce the effect of solving the problem by 1/8. 
Figure 4-2 shows the symmetry group with size 6. 
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4

4I

4

90R 180R 270R

V HD 'D
4

4I

4

90R 180R 270R

V HD 'D

 
Figure 4-2. The symmetry group with size 6 

 
We use permutations to present the symmetry group. 

Here, we give some definitions of the permutation. Let 
nΠ  be the set of all permutations over the ground set 

}1,...,1,0{ −= nI n . A permutation nΠ∈π  is 

represented by an n -vector. ][iπ  is the image of i  

under π . If v  is an n -vector, )(vw π=  is the n -

vector obtained by permuting the coordinates of v  

according to π .  Let’s consider the IP problem whose 

coefficient of the objective is Tc , coefficient of the 

constraints is A , and RHS  of the constraints is b . 

A  is an nm×  matrix. For a permutation π  of the 

n  variables such that cc =)(π  and a permutation 

µ  of the m  constraints of A  such that bb =)(µ , 

),( µπA  is the matrix obtained form A  by permuting 

its columns according to π  and its rows according to 

µ .  

Let }),( s.t.  exists  there|{ AAG == µπµπ , which is 

a permutation group of nI . For an n -vector x  and 

any permutation G∈π , we note that :  

 
optimal )(  optimal 
feasible )(  feasible 

xx
xx

π
π

⇔
⇔

 

Hence, we call G  the symmetry group of the 

feasible (and optimal) set of the IP. 
 

Example 1. Consider the group G  of symmetries of 

the 3× 3 square. 

       

ⓞ ① ②
③ ④ ⑤
⑥ ⑦ ⑧

ⓞ ① ②
③ ④ ⑤
⑥ ⑦ ⑧

 
G  comprises 8 permutations : 

},',,,,,,,{ 27018090 DDHVRRRIG∈  

,}8,7,6,5,4,3,2,1,0{ TI = ,}6,3,0,7,4,1,8,5,2{90
TR =

,}0,1,2,3,4,5,6,7,8{180
TR = ,}2,5,8,1,4,7,0,3,6{270

TR =

,}6,7,8,3,4,5,0,1,2{ TV = ,}2,1,0,5,4,3,8,7,6{ TH =  

,}8,5,2,7,4,1,6,3,0{ TD = TD }0,3,6,1,4,7,2,5,8{'= .  

 
When we execute the branch-and-cut procedure, we 

have to treat the symmetry group with arrays of the 

indices of the fixed variables. If we have t  types of 

sensor, we should store 1+t  arrays for each branch 

node. Given a node a  of our branch-and-cut tree over 

tn ⋅  variables, we define the following 1+t  sets :  

}at  0  tofixed is |{0 axZkjF k
jtna ⋅∈⋅=  

}at  1  tofixed is |1{ 11 axZjF jtna ⋅∈⋅=  

}at  1  tofixed is |2{ 22 axZjF jtna ⋅∈⋅=  

Μ                              

}at  1  tofixed is |{ axZtjF t
jtn

t
a ⋅∈⋅=  

 

Every branch node has these 1+t  sets. The set for 

descendant is inherited form the ancestor’s one, and 
adds one index to an array. When we make two branch 
nodes, we should check these new nodes are 
isomorphic to the previously defined nodes. If the 
isomorphic node is found, we can prune the node. It 
gives the same solution value as the previous node. 
Searching the isomorphic node does not give the 
improvement of the solution. It is waste of time. So, we 
consider one problem for each isomorphism class, 
which is called the representative of the class. 
 

4.4. Getting an upper bound 

Before the branch-and-cut procedure, we run a 
heuristic algorithm that describes an upper bound to the 
branch-and-bound tree. In branch-and-bound, an upper 
bound is obtained by discovering feasible solutions to 
the original MDSLP. When we search an upper bound, 
there exists a trade-off between the quality and the 
search time. We would like to get a solution as close to 
optimal as possible, but it takes quite a time to search. 
We can get a loose solution in a short time. In our 
heuristic algorithm, we use a short-time algorithm. We 
propose a pattern of the sensor placement. We assume 

the minimal sum of coverage quantity by sensors α  is 

1. At first, choose an arbitrary point and locate sensor at 
this point. With this point as the central figure, locate 
sensors at the points on the upper, lower, left, and right 
sides of the point. Intervals between arbitrary point and 
new points are the range of sensor. Then, choose the 
other point which is located on the diagonal of the first 
chosen point, and locate sensor. The vertical and 
horizontal distances between two points are half of the 
range of sensor. With this new point, locate sensors 
with the previous pattern. Figure 4-3 shows the pattern 
that we suggest. 
 

The first chosen point

The selected point in the pattern with center point

The second chosen point

The selected point in the pattern with center point

The first chosen point

The selected point in the pattern with center point

The second chosen point

The selected point in the pattern with center point

 
Figure 4-3. An example of getting an upper bound with       
  the range of sensor is 2. 
 
Here is the procedure for getting an upper bound 

solution value to the branch-and-bound ([24]). 
 

Given )2(≥u , t , sr , and sc  for   Ts∈  

Step 1. Sort the efficiency of sensor type. 

1

1

1

1

c

r

c

r

c

r
t

t

t

t

≥≥≥
−

−

Λ . 

Step 2. If 










 −
≤−

2

1
1

2r
u , .1=h  Else if 











 −
≤−

2

1
1

3r
u , .  .2 Λ=h  Else if 











 −
≤−

2

1
1

tr
u , 

.1−= th  Else, .th =  

Step 3. Set 







=

2

u
a , and locate type- h  sensor at 

),( aa  grid point. Set )
2

or ( 
2

hh r
a

r
ab +−= , and 

locate type- h  sensor at ),( bb  grid point. According 

to the pattern, locate type- h  sensors. 
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Step 4. Check the feasibility for all grid points. If we 
find a point that is not covered yet, we should locate 
sensor at this point.  
Step 5. If every grid points is covered, stop. Else, go to 
Step 4. 
 
If the minimal sum of coverage quantity by sensors 

α  is not 1, we can simply modify the algorithm. The 

pattern is composed with selected points whose interval 

between the center point is 












α

hr
 instead of hr . This 

heuristic algorithm provides an upper bound of the 
branch-and-bound tree in a short time. 
 

4.5. Branch-and-cut procedure 

 

4.5.1. Cutting plane algorithm 

The cutting plane algorithm generates useful valid 
inequalities. We avoid adding a huge number of valid 
inequalities at the root node of a branch-and-bound tree. 
It may be a disadvantage to add all valid inequalities we 

have found. Suppose that P  is the polyhedron of 

MDSLP, and X  is the set of points in P  

( tuZPX
2

∩= ). We assume that we know a family F  

of valid inequalities for X , 0ττ ≤x  with F∈),( 0ττ . 

The cutting plane procedure is described as follows 
 

Step 1. Set 0=i  and PP =0 . 

Step 2. Solve the LPi with iPx∈ . Let ix  denote the 

optimal solution. 

Step 3. If 
tui Zx 2∈ , stop. ix  is the optimal solution of 

the MDSLP. 

Step 4. If 
tui Zx 2∉ , try to find a valid inequality 

Fii ∈),( 0,ττ  such that 0,iii x ττ > . 

Step 5. If Fii ∈),( 0,ττ  can be found, augment 

}|{ 0,1 iiii xxPP ππ ≤∩=+ . Otherwise, stop. 

Step 6. Increment 1+← ii . 

Step 7. Go to Step 2. 
 

4.5.2. Branch –and-cut procedure. 

The branch-and-cut procedure is a combination of 
cutting plane algorithm and branch-and-bound. After 
solving the LP relaxation in branch node, we try to find 
a violated cut by using the cutting planes. Each branch 
node has a formulation of LPi which fixes a certain 
variable to 0 or 1. The descendent nodes inherit the 
bounds of the variables and violated cuts from their 
ancestor node. 
Suppose a certain problem LPi  provides the optimal 

solution x  whose objective value z  is less than 

incumbent value. If x  is integral, the incumbent 

solution is updated to x . Else, we branch into two 

nodes. 
When we select another node to solve after making 

branch, the branching strategy that is used in this thesis 
is depth-first search. If the current node is not pruned, 
the next node considered is one of its descendents. 
Otherwise, we go back on the path from this node to 
the root until we find a node that has a child that has 
not been considered yet. The main motivation for this is 
to find feasible solutions quickly. When we make 
branching, the variable selection rule that is used is 
maximum integer infeasibility. We select one fractional 
variable with value closet to 0.5. If the tie occurs, we 

select one variable that has a higher coefficient of the 
objective. The two new branch nodes are generated by 
setting the value of the variable to 0 and 1, respectively. 
 

5. Computational Results 
 

In this chapter, we state the results we have obtained 
by applying the algorithm presented in the previous 
sections to the test problems. 
 

5.1. Test problems 

We assume that we have 3 types of sensors in test 
problems. Each type of sensor owns its cost and range. 
Table 5-1 shows the information about sensor type. Test 
problems are divided into three classes. The first one is 
problem A that includes a type of sensor, which is type1. 
The second one is problem B that includes two types of 
sensors, which are type 1 and type 2. The last one is 
problem C that includes three types of sensors, which 
are type 1, type 2, and type 3. Table 5-2 describes them. 
We test two cases of the minimal sum of coverage 

quantity by sensors α . At first, we test problems with 

1=α , and then, test problems with 2=α . So, we test 

6 problems. The size of sensor field varies from 2 to 13. 
Each test problem is considered with these various sizes.  
 

Table 5-1. Information about sensor type 

Sensor type Cost ($10) Range (10m) 

Type 1 2 2 

Type 2 3 4 

Type 3 4 6 

 
Table 5-2. The ID of test problem 

ID t  Sensor type 

A 1 Type 1 

B 2 Type 1 ,2 

C 3 Type 1, 2, 3 

* t : the number of sensor types 

 
To compare our algorithm, we test two control 

groups. The first one runs with branch-and-bound 
procedure which does not provide a cut generation. The 
second one runs with branch-and-cut procedure without 
isomorphism pruning.  
 

5.2. LP solver 

For the computational study, we coded the procedure 
in C language. We used CPLEX 9.0 concert technology. 
All problems were tested on a AMD Athlon™ 64 X2 
Dual Core(2.01GHz). 
 

5.3. Computational results 

The results for test problems are summarized at 

Table 5-3. In this table, the heading α  refers to the 

minimal sum of coverage quantity by sensors. The 

heading u  refers to the number of grid points in 

width (length) of the sensor field. The headings IPZ , 

LPZ  refer to the optimal solution of IP, and the 

objective value of LP relaxation of MDSLP at the root 
node. GAP is defined as follows: 

100(%) ×
−

=
IP

LPIP

Z

ZZ
GAP  

The heading UB is the upper bound which is 
obtained by heuristic at the root node. The heading 
#cuts and #B&C means the number of cuts generated, 
and the number of nodes generated in the branch-and-
cut procedures. Finally, Time refers to the accumulated 
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CPU time needed to solve the problem until the optimal 
solution is obtained.  
 

We could confirm our algorithm provides an optimal 
solution in a short time. 
 

 
Table 5-3. Results for test problems  

ID α  u  
IPZ  LPZ  GAP(%) UB #cuts #B&C Time(sec) 

A 1 2 4 4 0 4 0 0 0.063 
A 1 3 8 7.656 4.3 10 0 0 0.031 
A 1 4 14 12.05 13.9 16 4 0 0.031 
A 1 5 18 17.04 5.31 26 13 0 0.031 
A 1 6 26 23.56 9.38 36 20 12 0.078 
A 1 7 32 30.21 5.61 56 24 10 0.109 
A 1 8 42 39 7.15 64 195 630 1.078 
A 1 9 50 47.37 5.26 82 215 575 1.265 
A 1 10 64 57.88 9.57 100 303 6751 18.391 
A 1 11 72 68.57 4.76 122 286 1052 3.968 

A 2 2 8 8 0 8 0 0 0.078 
A 2 3 16 16 0 18 0 0 0.031 
A 2 4 26 26 0 32 0 0 0.031 
A 2 5 38 36.16 4.85 50 0 0 0.047 
A 2 6 52 48.51 6.71 72 19 0 0.062 
A 2 7 68 63.86 6.1 98 86 73 0.219 
A 2 8 88 79.23 9.97 128 180 5272 3.453 
A 2 9 106 98.07 7.48 162 231 7261 8.141 
A 2 10 130 118.8 8.61 200 288 804439 14015.9 
A 2 11 152 139.8 8.06 242 351 987646 22597.8 

B 1 2 4 3.489 12.8 4 0 0 0.031 
B 1 3 6 4.85 19.2 6 9 0 0.031 
B 1 4 9 6.59 26.8 12 12 0 0.062 
B 1 5 12 9.549 20.4 18 9 4 0.046 
B 1 6 15 13.35 11 24 63 68 0.171 
B 1 7 20 15.99 20 24 297 1567 2.406 
B 1 8 24 19.03 20.7 33 387 15215 27.469 
B 1 9 27 23.55 12.8 42 489 165317 1181.45 
B 1 10 33 29.34 11.1 54 603 931182 25026.2 

B 2 2 8 6.978 12.8 8 0 0 0.078 
B 2 3 12 9.821 18.2 12 49 37 0.02 
B 2 4 15 13.38 10.8 21 10 0 0.047 
B 2 5 22 19.33 12.1 33 57 89 0.05 
B 2 6 29 26.71 7.91 36 219 2348 1.703 
B 2 7 36 32.56 9.55 48 297 74580 185.781 
B 2 8 42 38.45 8.44 60 387 17338 34.109 

C 1 2 4 3.489 12.8 4 0 0 0.031 
C 1 3 6 4.85 19.2 6 9 0 0.047 
C 1 4 7 6.282 10.3 8 0 0 0.031 
C 1 5 8 7.673 4.09 12 0 0 0.031 
C 1 6 12 9.341 22.2 20 99 93 0.187 
C 1 7 16 11.65 27.2 24 297 1780 2.078 
C 1 8 19 15.31 19.4 24 387 1243 4.25 
C 1 9 22 18.75 14.8 32 489 26074 92.187 
C 1 10 26 20.96 19.4 36 603 664740 10569.8 
C 1 11 28 23.4 16.4 44 729 92833 808.563 
C 1 12 31 26.41 14.8 48 867 47286 589.204 

C 2 2 8 6.978 12.8 8 0 0 0.047 
C 2 3 11 9.821 10.7 12 4 20 0.046 
C 2 4 14 12.56 10.3 20 9 7 0.062 
C 2 5 16 15.47 3.31 20 0 0 0.046 
C 2 6 22 18.68 15.1 32 219 582 0.562 
C 2 7 27 23.42 13.3 40 163 76 0.39 
C 2 8 32 30.96 3.24 48 12 0 0.078 

 

6. Concluding Remarks 
 
In this thesis, we have introduced an optimization 

algorithm to solve MDSLP. We provided the new 
formulation. MDSLP has a large number of constraints, 
which are knapsack constraints and generalized upper 

bound (GUB) constraints. We used branch-and-cut 
algorithm with Gomory fractional cuts, cover cuts, and 
GUB cover cuts. MDSLP has a large number of 
symmetries, so we can consider one of them, and 
ignore the others. When we execute branch-and-cut 
procedure, we check that new branch node is 
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isomorphic to the previously defined nodes or not. If 
new branch node is isomorphic, then we can prune this 
node. The proposed algorithm solves the problem in a 
reasonable time. 
The sensor location problem can be applied to 

various coverage problems. This algorithm is one of the 
most basic approaches to solve coverage problem. It is 
expected to apply to various extensions. It is possible to 
solve problem with arbitrary sensor field. In the 
telecommunication networks, we can consider the 
communication between sensors. These kinds of 
research are more realistic. 
 

References 
 [1] Araque, J.R., Kudva, G., Morin, T.L., and Pekny, 
J.F. (1994). A branch-and-cut algorithm for vehicle 
routing problems. Annals of Operations Research, 50, 
37–59. 
[2] Balas, E., Ceria, S., and Cornue’jols, G.. (1996). 
Mixed 0–1 programming by lift-and-project in a 
branch-and-cut framework. Management Science, 42(9), 
1229–1246. 
[3] Brooks, R.R. and Iyengar, S.S. (1998). Multi-sensor 
fusion: fundamentals and applications with software. 
Upper Saddle River, N.J.: Prentice Hall. 
[4] Chakrabarty, K., Iyengar, S.S., Qi, H., and Cho, E. 
(2002). Grid coverage for 
surveillance and target location in distributed sensor 
networks. IEEE Transactions on Computers, 51, 1448-
1453. 
[5] Chiu, P.L. and F.Y.S.Lin (2004). A simulated 
annealing algorithm to support the sensor placement for 
target location. Proc. IEEE CCECCE, 867-870. 
[6] Dhillon, S.S. and Chakrabarty, K. (2003). Sensor 
placement for effective coverage and surveillance in 
distributed sensor networks. Proc. IEEE WCNC, 3, 
1609-1614. 
[7] Dhillon, S.S., Chakrabarty, K., and Iyengar, S.S. 
(2002). Sensor placement for grid coverage under 
imprecise detections. Proc. 15th International 

Conference on Information Fusion, 2, 1581-1587. 
[8] Estrin, D., Govindan, R., Heidemann, J., and Kumar, 
S. (1999). Next century challenges: scalable 
coordination in sensor networks. Proc. ACM/IEEE Int’l 

Conf. Mobile Computing and Networks. 
[9] Fischetti, M., Toth, P., and Vigo, D. (1997). A 
branch-and-cut algorithm for the symmetric generalized 
traveling salesman problem. Operations Research, 
45(3),  378-394. 
[10] Frank, Y. S. Lin, and Chiu, P.L. (2005). A near-
optimal sensor placement algorithm to achieve 
complete coverage/discrimination in sensor networks, 
IEEE Communications Letters, 9(1), 43-45. 
[11] Garey, M., and Johnson, D. (1979). Computers and 
intractability: a guide to the theory of NP-completeness. 
San Francisco: W. H. Freeman. 
[12] Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P. 
(1998). Lifted cover inequalities for 0-1 integer 
programs: computation. IJOC 10, 427–437.  
[13] Hoffman, K., Padberg, M.W. (1993). Solving 
airline crew scheduling problems by branch and cut. 
Management Science, 39, 657–682. 
[14] Iyengar, S.S., Prasad, L., and Min, H. (1995). 
Advances in distributed sensor technology. Englewood 
Cliffs, N.J.: Prentice Hall. 
[15] Kahn, J.M., Katz, R.H., and Pister, K.S.J. (1999). 
Mobile networking for smart dust. Proc. ACM/IEEE 

Int’l Conf. Mobile Computing and Networks. 
[16] Kaparis, K. and Letchford, A.N. (2005). A cut-and-

branch algorithm for the multidimensional knapsack 
problem. . Lancaster University. 
[17] Margot, F. (2002). Pruning by isomorphism in 
branch-and-cut. Mathematical Programming, 94, 71–90. 
[18] Margot, F. (2003). Exploiting orbits in symmetric 
ILP. Mathematical Programming Ser.B, 98, 3–21. 
[19] Nemhauser, G..L. and Wolsey, L.A. (1998). Integer 
and combinatorial optimization. New York: John Wiley 
and Sons, Ltd.. 
[20] O’Rourke, J. (1987). Art gallery theorems and 
algorithms. New York: Oxford Univ. Press. 
[21] Padberg, M. and Rinald, G.. (1991). A branch-and-
cut algorithm for the resolution of large-scale 
symmetric traveling salesman problems. SIAM Review, 
33, 60-100. 
[22] Raaphorst, S. (2004). Branch-and-cut for 
symmetrical ILPs and combinatorial designs. A 
master’s thesis. University of Ottawa. 
[23] Sebastiani, R., Giorgini, P., and Mylopoulos, J. 
(2004). Simple and minimum-cost satisfiability for goal 
models. In 16th International Conference on Advanced 
Information Systems Engineering, Riga, Latvia. 
[24] Wolsey, L.A. (1998). Integer programming, New 
York: Wiley. 

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집


	MAIN



