
 - 1 -

An Optimal Algorithm for the Sensor Location ProblemAn Optimal Algorithm for the Sensor Location ProblemAn Optimal Algorithm for the Sensor Location ProblemAn Optimal Algorithm for the Sensor Location Problem

to Cover Sensor Networksto Cover Sensor Networksto Cover Sensor Networksto Cover Sensor Networks

Kim, Hee seon*, Sungsoo Park**
 * Department of Industrial Engineering, KAIST (kimhs3004@kaist.ac.kr)

** Department of Industrial Engineering, KAIST (sspark@kaist.ac.kr)

Abstract

We consider the sensor location problem (SLP) on a

given sensor field. We present the sensor field as grid
of points. There are several types of sensors which have
different detection ranges and costs. If a sensor is
placed in some point, the points inside of its detection
range can be covered. The coverage ratio decreases
with distance.
The problem we consider in this thesis is called

multiple-type differential coverage sensor location
problem (MDSLP). MDSLP is more realistic than SLP.
The coverage quantities of points are different with
their distance form sensor location in MDSLP. The
objective of MDSLP is to minimize total sensor costs
while covering every sensor field. This problem is
known as NP-hard.
We propose a new integer programming formulation

of the problem. In comparison with the previous
models, the new model has a smaller number of
constraints and variables. This problem has symmetric
structure in its solutions. This group is used for pruning
in the branch-and-bound tree. We solved this problem
by branch-and-cut(B&C) approach. We tested our
algorithm on about 60 instances with varying sizes.

1. Introduction

The research issues in distributed networks are
effective surveillance and environment monitoring. The
monitoring and surveillance can be done with sensors,
and the covered networks are called sensor networks.
The covered areas are simply called sensor fields. If the
sensor fields are predetermined, we can make a
decision to choose the method that locates sensors to
meet a certain quality of service requirement, such as
surveillance [6], [7], target location [4], [5], [10], and
target tracking. If the location of sensors is decided
randomly, the deterioration of service quality is sure to
result. This is the reason why we have to research the
method of deployment of sensors.
The sensor fields are covered by several different

types of sensors, which are appropriately located in
sensor networks. These sensors have different detection
range and cost. The sensor can monitor the region
which is the inside of its detection range. The cost of
sensors increases with their detection range. Clearly,
sensors which have longer detection range have higher
cost. If we use only long-range sensors, the sum of total
sensor costs may be too much expensive. On the
contrary, if we use only short-range sensors, the
effectiveness of the sensor network may not be
achieved. Therefore, the efficient sensor location
strategy is necessary to minimize total cost.

The sensor networks can be deployed in two ways.
The first one is a random placement. When the
environment of sensor fields is unknown, this is the
only choice. It is impossible to decide the optimal
sensor locations, because we have no information about
the sensor fields. Sensors are thrown to any place by
aircrafts randomly. The second one is a grid-based
placement. If the sensor fields are predetermined, we
can use this way. The sensor fields are divided into
grids. Sensors can be deployed at any grid points. If the
number of grid points is infinitely large, we can regard
the sensor fields as continuous fields. It is more
realistic. This thesis focuses on this method.
The problem in the sensor networks can be applied to

many practical problems ([5], [6], [20]). Nevertheless,
prior researches have ignored the sensor location issues.
Most previous study has focused on efficient sensor
communication ([8], [15]) and sensor fusion ([3], [14])
for a given sensor field. As the size of sensor networks
is expanded and the number of sensors is increased,
efficient deployment strategies is required.
The sensor location problem (SLP) determines the

number of sensors and the location of sensors to be
selected to satisfy the service quality in a given area. K.
Chakrabarty et al.[4] formulates SLP with grid-based
placement in terms of cost minimization under
coverage constraints. Frank Y.S. Lin et al.[10] presents
a heuristic algorithm to SLP for target location. We
consider the more realistic problem, which has
differential coverage quantity. We call this problem as
the multiple-type differential coverage sensor location
problem (MDSLP). In SLP, the coverage quantities of
points inside of detect range are one. In contrast, the
coverage quantities of points are different with their
distances from sensor location in MDSLP. In this thesis,
we focus on MDSLP with grid-based placement.
The thesis is organized as follows. Chapter 2 defines

the problem. In chapter 3, we present mathematical
formulations for two models of MDSLP. Chapter 4
provides an algorithm for the problem. In chapter 5, we
present computational results for the algorithm. Finally,
we give concluding remarks in Chapter 6.

2. Problem Description

This chapter contains a detailed description of
MDSLP (multiple-type differential coverage sensor
location problem): input and output of MDSLP,
assumptions, and objective function will be described.

Inputs are as follows.
• The size of sensor networks
• The minimal sum of coverage quantity by sensors
• The number of types of sensors

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

 - 2 -

The sensor field is defined as a square. The size of
sensor networks is the width (or length) of the sensor
field. We represent the sensor field as a grid of points.
So, the total number of grid points in the sensor field is
the square of the size of sensor networks.
Coverage can be considered as the measure of quality
of service of a sensor network. Every grid point must
be covered at least the minimal sum of coverage
quantity by sensors. The available sensor types which
can be appropriately placed in the sensor field are
restricted. These sensors differ form each other in their
detection ranges and costs. Figure 2-1 shows the types
of sensors.

Type A sensor
Detection range : 60m
Sensor cost : $4

Type B sensor
Detection range : 40m
Sensor cost : $3

Type C sensor
Detection range : 20m
Sensor cost : $2

Detection range
(10m between grid points)

Type A sensor
Detection range : 60m
Sensor cost : $4

Type B sensor
Detection range : 40m
Sensor cost : $3

Type C sensor
Detection range : 20m
Sensor cost : $2

Detection range
(10m between grid points)

Figure 2-1. The types of sensors

Output is the assignment of sensors to grid points.

When we solve MDSLP, we assume that the sensor
networks consist of two-dimensional square sensor
field which is presented as a grid of points. The size of
sensor networks means the number of grid points in
width (length) of the sensor field. The size of sensor
networks in figure 2-1 is 6. It means that the width and
length of the sensor field is 60m, and the sensor
networks have an area of 3600 square meters. If a
sensor is placed in some grid point, the points inside of
its detection range can be covered. The coverage ratio
decreases with distance between sensor and the target
point. The sensor cost increases with its detection range.

Our objective is to assign sensors for complete
coverage of the sensor field with minimum total cost of
sensors.

3. Mathematical Formulation

In this chapter, we introduce two formulations of the
MDSLP. The first one is modified from the model
proposed by [4] and [10]. The second one is the
formulation we propose.

3.1. Formulation 1

The original formulation of the MDSLP was
proposed by [4]. [10] presented another formulation
with different objective function. Formulation 1 is
modified from above two models. The following
notation and decision variables are used in the
formulation:

 [Notation]
HN

 }1,...,1,0{N
 field,sensor theofin width points grid ofset the

H −= u

VN
 }1,...,1,0{

 field,sensor theoflength in points grid ofset the
−= uNV

T },...,1{ es,sensor typ ofset the tT =

u
 fieldsensor

 theof (length)in width points grid ofnumber the

 [decision variables]

Formulation can be constructed as follows.

[Formulation 1]

Min ∑ ∑ ∑
∈ ∈ ∈Ts Nk Nl

s
lklk

s

H V

xc),)(,((1)

s.t. 0),)(,(),)(,(),)(,(≤− ss
lklk

s
lkjilkji rxxd (2)

 TslkjiNljNki VH ∈∀≠∈∀∈∀),,(),(,, ,,

s

lkjis
lkji

s
lklk

r

d
xx

),)(,(

),)(,(),)(,(≤− (3)

),,(),(,, ,, TslkjiNljNki VH ∈∀≠∈∀∈∀

αγ ≥∑ ∑ ∑
∈ ∈ ∈Ts Nk Nl

s
lkji

s
lkji

H V

x),)(,(),)(,(

VH NjNi ∈∀∈∀ ,

(4)

∑
∈

≤
Ts

s
lklkx 1),)(,(

VH NlNk ∈∀∈∀ ,
(5)

}1,0{),)(,(∈s

lkjix

TsNljNki VH ∈∀∈∀∈∀ ,, ,,
(6)

The objective (1) is to minimize the sum of sensor

costs with complete coverage of the sensor field.
Constraints (2) and (3) mean that sensor with range
sr placed on grid point),(lk can detect a target at

grid point),(ji if the distance between these two grid

points is less than sr . Constraints (4) mean that every

grid point must be covered at least α . Constraints (5)

represent that at most one sensor can be placed on a
grid point. Constraints (6) are the binary conditions on
the variables.

3.2. Formulation 2

In this section, we propose another integer
programming formulation of MDSLP. Formulation 1
has a large number of constraints and variables. To
reduce the size of the model, we make new formulation.
It has a smaller number of constraints and variables
than the previous one. We remove constraints (2) and
(3) in formulation 1. We use the new coefficient

t essensor typ ofnumber the

α sensorsby quantity coverage of sum minimal the

sr sensor, - typeof range the Tss ∈

sc sensor - typeofcost the s

),)(,(lkjid

 0.5-)()(

,, ,,
 ,),(and),(points gridbetween distance

22
),)(,(



 −+−=

∈∈

ljkid

NljNki
lkji

lkji

VH

s
lkji),)(,(γ

s

lkji
s

s

r

dr

jilk
s

lkji

)5.0(

 ,),(in),(
point gridat sensor - typeof ratio coverage

),)(,(

),)(,(

+−
=γ

s
lkjix),)(,(







=
 otherwise 0,

),(point gridat sensor -by type
covered becan),(point grid theif 1,

lks

ji

s
lklkx),)(,(







=
 otherwise 0,

),(point
gridat assigned issensor - typeif 1,

lk

s

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

 - 3 -

s
lkji),)(,(δ instead of s

lkji),)(,(γ . It contains the meaning of

constraints (2) and (3). The decision variables in
formulation 2 are only one kind of variable set that
means the assignment of sensor at grid point.
Notation and decision variables for new formulation

are as follows:

[Notation]

HN

 }1,...,1,0{N
 field,sensor theofin width points grid ofset the

H −= u

VN

 }1,...,1,0{
 field,sensor theoflength in points grid ofset the

−= uNV

T },...,1{ es,sensor typ ofset the tT =

u
 fieldsensor

 theof (length)in width points grid ofnumber the

t essensor typ ofnumber the

α sensorsby quantity coverage of sum minimal the

sr sensor, - typeof range the Tss ∈

sc sensor - typeofcost the s

),)(,(lkjid

22

),)(,()()(

,, ,,
 ,),(and),(points gridbetween distance

ljkid

NljNki
lkji

lkji

VH

−+−=

∈∈

s
lkji),)(,(δ







≥−

−
=

 otherwise , 0

0 if ,

 ,),(in),(
point gridat sensor - typeof ratio coverage

),)(,(

),)(,(

lkji
s

s

lkji
s

dr
r

dr

jilk
s

[decision variables]

s
jix),(







=

 otherwise 0,
),(point gridat assigned issensor - typeif 1, jis

With above notation and decision variables, new
formulation can be constructed as follows.

[Formulation 2 (MDSLP)]

Min ∑ ∑ ∑
∈ ∈ ∈Ts Ni Nj

s
ji

s

H V

xc),((7)

s.t. αδ ≥∑ ∑ ∑
∈ ∈ ∈Ts Ni Nj

s
ji

s
lkji

H V

x),(),)(,(

VH NlNk ∈∀∈∀ ,
(8)

 ∑
∈

≤
Ts

s
jix 1),(

VH NjNi ∈∀∈∀ , (9)

}1,0{),(∈s
jix TsNjNi VH ∈∀∈∀∈∀ , , (10)

The objective function (7) means the sum of sensor

costs for complete coverage of the sensor field is
minimized. By constraints (8), every grid points can be
covered by sensor at least minimal sum of coverage
quantity by sensors α . Coefficient s

lkji),)(,(δ describes

that a sensor always detects a target that lies within its

range. That is, sensor with range sr placed on grid

point),(lk can detect a target at grid point),(ji if

the distance between these two grid points is less than

or equal to sr . Constraints (9) mean that at most one
sensor should be placed on a grid point. Constraints
(10) are the binary conditions on the variables.
The sensor location problem (SLP) is NP-hard ([4]).

This problem is restricted to the minimum-cost

satisfiability problem, which is known as NP-hard
([11],[23]). SLP is a special case of MDSLP. Therefore,
MDSLP is NP-hard. (Frank Y.S. Lin et al.[05ieee]].

4. Algorithm

4.1. Overview

The basic approach of algorithm of this thesis is
branch-and-cut. Branch-and-cut is a branch-and-bound
algorithm in which cutting planes are generated
throughout the branch-and-bound tree. This algorithm
has been widely used for large-scale mixed integer
problem [1], [2], [9], [13], [21].
At first, we get an upper bound of MDSLP by

heuristic algorithm. Then, we construct the initial
formulation of LP0. LP0 is the LP relaxation of the
initial IP formulation. After solving the LP0, we
continue to find the valid inequalities (Gomory
fractional cuts, cover inequalities or generalized upper
bound (GUB) cover inequalities) which are violated by
the current solution. If one violated inequality of these
three kinds of inequalities is found, the valid inequality
found in its separation algorithm formulation is added
as cut to LP0 and no other separation algorithm is called.
So we construct the next formulation, which is LP1.
If we get LP1, we go through the same procedure as

we do after the LP0 is obtained.
After iterating this procedure, when no more valid

inequalities can be found, we check if the solution
obtained by solving the last LP, which is LPk, is integral.
If we have obtained an integral solution, we are done
with an optimal solution of MDSLP. Otherwise, we
have to start the branch-and-cut procedure to find an
optimal solution to the final formulation, LPk, which is
also an optimal solution of MDSLP.

LP0:LP relaxation of the initial IP, UB:upper bound of IP

Set L={LP0}, =incumz=UB, z=-M, incumx:empty

Is L empty?

Select and delete a problem LPi form L

zi > incumz?

Solve the LPi -> xi,zi

LPi infeas?

Is there a cut

violated by xi?

zi incumz?

xi integral?

Branch into two subproblems LPj,LPk

Is LPj isomorphic

with in L?

Incumx&incumz:opt.

If no incumx exist -> infeas.

STOP

Add cut to the constraint set

Incumz=zi, incumx=xi,=zi

Set zj=zi, add LPj to L

Set zk=zi, add LPk to L
Is LPk isomorphic

with in L?

No

Yes

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

START

*: sufficiently large number

LP0:LP relaxation of the initial IP, UB:upper bound of IP

Set L={LP0}, =incumz=UB, z=-M, incumx:empty

Is L empty?

Select and delete a problem LPi form L

zi > incumz?

Solve the LPi -> xi,zi

LPi infeas?

Is there a cut

violated by xi?

zi incumz?

xi integral?

Branch into two subproblems LPj,LPk

Is LPj isomorphic

with in L?

Incumx&incumz:opt.

If no incumx exist -> infeas.

STOP

Add cut to the constraint set

Incumz=zi, incumx=xi,=zi

Set zj=zi, add LPj to L

Set zk=zi, add LPk to L
Is LPk isomorphic

with in L?

No

Yes

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

LP0:LP relaxation of the initial IP, UB:upper bound of IP

Set L={LP0}, =incumz=UB, z=-M, incumx:empty

Is L empty?

Select and delete a problem LPi form L

zi > incumz?

Solve the LPi -> xi,zi

LPi infeas?

Is there a cut

violated by xi?

zi incumz?

xi integral?

Branch into two subproblems LPj,LPk

Is LPj isomorphic

with in L?

Incumx&incumz:opt.

If no incumx exist -> infeas.

STOP

Add cut to the constraint set

Incumz=zi, incumx=xi,=zi

Set zj=zi, add LPj to L

Set zk=zi, add LPk to L
Is LPk isomorphic

with in L?

No

Yes

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

START

*: sufficiently large number

Figure 4-1. The overall procedure of the branch-and-cut
 algorithm

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

 - 4 -

MDSLP has a large symmetry group which has 8
elements. These elements return the same solutions, so
we consider one of them when we execute the branch-
and-cut procedure.
The overall procedure of the algorithm to solve

MDSLP is presented in Figure 4-1.

4.2. Valid inequalities
A valid inequality for an integer programming is an

inequality that is satisfied by all feasible solutions. We
are interested in valid inequalities, which are called cuts
that are not included in the current formulation and are
not satisfied by all feasible points to the LP relaxation.
A violated cut is a cut that is not satisfied by the given
optimal solution to the LP relaxation. If we find a
violated cut, we can add it to the LP relaxation. Then
we can tighten current formulation. The LP feasible
region becomes smaller but the IP feasible region does
not changed. Then we can resolve the LP and repeat the
above procedure, if necessary, so long as we can
continue to find violated cuts.

4.2.1. Gomory fractional cuts

Gomory fractional cuts are generated by applying
integer rounding on a pivot row in the optimal LP
tableau for a basic integer variable with a fractional
solution value ([19]).
Now, we denote the constraints

}|{ bAxZxS n ≤∈= + in equality form as

}),(|{ bxIAZxS mnl =∈= +
+ . The original variables are

),...,,(21 nxxx and the slack variables are

),...,,(21 mnnn xxx +++ . A and b are an integral

matrices. Suppose },..,1{ nN = , },..,1{ mM = ,

},..,{ 1 naaA = , and },..,{ 1 meeI = . We consider the

linear combination of equations given by

bxIA λλ =),(, where),...,,(21 mλλλλ = is a weight

vector. We define jj aa λ= for Nj∈ and bb λ= .

Then bxIA λλ =),(can be written as

bxxa
Mi

ini
Nj

jj =+ ∑∑
∈

+
∈

λ .

Proposition 1. The inequality

0fxgxf
Mi

ini
Nj

jj ≥+ ∑∑
∈

+
∈

 (11)

is valid, where  jjj aaf −= for Nj∈ ,

 iiig λλ −= for Mi∈ , and  bbf −=0 .

4.2.2. Cover cuts

If a constraint takes the form of a knapsack
constraint, then there is a minimal cover associated
with the constraint. A minimal cover is a subset of the
variables of the inequality such that if all the subset
variables were set to one, the knapsack constraint
would be violated, but if any one subset variable were
excluded, the constraint would be satisfied.

IP often has a row i of the form i
Nj

jij bxa ≤∑
∈

. We

assume without loss of generality that 0≥ija for all

Nj∈ . If not, we can complement the variables for

which 0<ija . When we consider only row i , IP can

be relaxed to a 0-1 knapsack problem, with the feasible

region }|}1,0{{cov bxaxP
Nj

jj
Ner ≤∈= ∑

∈

. A set

NC ⊂ is called a cover if ba
Cj

j∑
∈

> .

Proposition 2. If NC ⊂ is a cover,

1−≤∑
∈

Cx
Cj

j (12)

is a valid inequality.

 In general, these inequalities are not facet-defining

for erPcov , but they can be strengthened by a
procedure called lifting ([12], [16], [19]).

4.2.3. GUB cover cuts

A GUB constraint for a set of binary variables is a
sum of variables less than or equal to one. If the
variables in a GUB constraint are included in a
knapsack constraint, the minimal cover can be selected
with the additional consideration that at most one of the
members of the GUB constraint can be one in a
solution.
A GUB inequality is an inequality of the form

1≤∑
∈Qj

jx , where NQ ⊂ . When IP contains a

knapsack row i and a set of GUB inequalities defined

by disjoint sets NQk ⊂ for Kk∈ , we obtain a

relaxation of IP with the feasible region

} 1,|}1,0{{ ∑∑
∈∈

∈∀≤≤∈=
kQj

ji
Nj

jij
NGUB KkxbxaxP . A

GUB cover GC is a cover that obeys the GUB

constraints, that is, no two elements of the cover belong

to the same iQ .

Proposition 3. For any GUB cover GC , the inequality

 1−≤∑
∈

G
Cj

j Cx
G

 (13)

is valid for GUBP .

The lifting procedure of the GUB cover also leads to

significant strengthening of this inequality ([12], [19]).

4.3. Isomorphism pruning

When we solve huge size of IP in a branch-and-cut
framework, the number of branch nodes is large.
However, these problems often have a large number of
symmetries, and if we are not interested in equivalent
solutions, we can simply ignore symmetric problems.
This has the possibility of dramatically reducing the
number of nodes that we need to consider in a branch-
and-bound tree ([17], [18], [22]).
MDSLP has a large symmetry group. We consider

the sensor field as a square. We have 8 isomorphic
problems as the (aspect) direction of sight: the identity

I , three rotations 27018090 , , RRR , the vertical

symmetry V , the horizontal symmetry H , the

symmetry along the main diagonal D , and the

symmetry along the other diagonal 'D . If we
consider in an isomorphism-free branch-and-cut tree,
we can reduce the effect of solving the problem by 1/8.
Figure 4-2 shows the symmetry group with size 6.

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

 - 5 -

4

4I

4

90R 180R 270R

V HD 'D
4

4I

4

90R 180R 270R

V HD 'D

Figure 4-2. The symmetry group with size 6

We use permutations to present the symmetry group.

Here, we give some definitions of the permutation. Let
nΠ be the set of all permutations over the ground set

}1,...,1,0{ −= nI n . A permutation nΠ∈π is

represented by an n -vector.][iπ is the image of i

under π . If v is an n -vector,)(vw π= is the n -

vector obtained by permuting the coordinates of v

according to π . Let’s consider the IP problem whose

coefficient of the objective is Tc , coefficient of the

constraints is A , and RHS of the constraints is b .

A is an nm× matrix. For a permutation π of the

n variables such that cc =)(π and a permutation

µ of the m constraints of A such that bb =)(µ ,

),(µπA is the matrix obtained form A by permuting

its columns according to π and its rows according to

µ .

Let }),(s.t. exists there|{ AAG == µπµπ , which is

a permutation group of nI . For an n -vector x and

any permutation G∈π , we note that :

optimal)(optimal
feasible)(feasible

xx
xx

π
π

⇔
⇔

Hence, we call G the symmetry group of the

feasible (and optimal) set of the IP.

Example 1. Consider the group G of symmetries of

the 3× 3 square.

ⓞ ① ②
③ ④ ⑤
⑥ ⑦ ⑧

ⓞ ① ②
③ ④ ⑤
⑥ ⑦ ⑧

G comprises 8 permutations :

},',,,,,,,{ 27018090 DDHVRRRIG∈

,}8,7,6,5,4,3,2,1,0{ TI = ,}6,3,0,7,4,1,8,5,2{90
TR =

,}0,1,2,3,4,5,6,7,8{180
TR = ,}2,5,8,1,4,7,0,3,6{270

TR =

,}6,7,8,3,4,5,0,1,2{ TV = ,}2,1,0,5,4,3,8,7,6{ TH =

,}8,5,2,7,4,1,6,3,0{ TD = TD }0,3,6,1,4,7,2,5,8{'= .

When we execute the branch-and-cut procedure, we

have to treat the symmetry group with arrays of the

indices of the fixed variables. If we have t types of

sensor, we should store 1+t arrays for each branch

node. Given a node a of our branch-and-cut tree over

tn ⋅ variables, we define the following 1+t sets :

}at 0 tofixed is |{0 axZkjF k
jtna ⋅∈⋅=

}at 1 tofixed is |1{ 11 axZjF jtna ⋅∈⋅=

}at 1 tofixed is |2{ 22 axZjF jtna ⋅∈⋅=

Μ

}at 1 tofixed is |{ axZtjF t
jtn

t
a ⋅∈⋅=

Every branch node has these 1+t sets. The set for

descendant is inherited form the ancestor’s one, and
adds one index to an array. When we make two branch
nodes, we should check these new nodes are
isomorphic to the previously defined nodes. If the
isomorphic node is found, we can prune the node. It
gives the same solution value as the previous node.
Searching the isomorphic node does not give the
improvement of the solution. It is waste of time. So, we
consider one problem for each isomorphism class,
which is called the representative of the class.

4.4. Getting an upper bound

Before the branch-and-cut procedure, we run a
heuristic algorithm that describes an upper bound to the
branch-and-bound tree. In branch-and-bound, an upper
bound is obtained by discovering feasible solutions to
the original MDSLP. When we search an upper bound,
there exists a trade-off between the quality and the
search time. We would like to get a solution as close to
optimal as possible, but it takes quite a time to search.
We can get a loose solution in a short time. In our
heuristic algorithm, we use a short-time algorithm. We
propose a pattern of the sensor placement. We assume

the minimal sum of coverage quantity by sensors α is

1. At first, choose an arbitrary point and locate sensor at
this point. With this point as the central figure, locate
sensors at the points on the upper, lower, left, and right
sides of the point. Intervals between arbitrary point and
new points are the range of sensor. Then, choose the
other point which is located on the diagonal of the first
chosen point, and locate sensor. The vertical and
horizontal distances between two points are half of the
range of sensor. With this new point, locate sensors
with the previous pattern. Figure 4-3 shows the pattern
that we suggest.

The first chosen point

The selected point in the pattern with center point

The second chosen point

The selected point in the pattern with center point

The first chosen point

The selected point in the pattern with center point

The second chosen point

The selected point in the pattern with center point

Figure 4-3. An example of getting an upper bound with
 the range of sensor is 2.

Here is the procedure for getting an upper bound

solution value to the branch-and-bound ([24]).

Given)2(≥u , t , sr , and sc for Ts∈

Step 1. Sort the efficiency of sensor type.

1

1

1

1

c

r

c

r

c

r
t

t

t

t

≥≥≥
−

−

Λ .

Step 2. If










 −
≤−

2

1
1

2r
u , .1=h Else if











 −
≤−

2

1
1

3r
u , . .2 Λ=h Else if











 −
≤−

2

1
1

tr
u ,

.1−= th Else, .th =

Step 3. Set 







=

2

u
a , and locate type- h sensor at

),(aa grid point. Set)
2

or (
2

hh r
a

r
ab +−= , and

locate type- h sensor at),(bb grid point. According

to the pattern, locate type- h sensors.

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

 - 6 -

Step 4. Check the feasibility for all grid points. If we
find a point that is not covered yet, we should locate
sensor at this point.
Step 5. If every grid points is covered, stop. Else, go to
Step 4.

If the minimal sum of coverage quantity by sensors

α is not 1, we can simply modify the algorithm. The

pattern is composed with selected points whose interval

between the center point is












α

hr
 instead of hr . This

heuristic algorithm provides an upper bound of the
branch-and-bound tree in a short time.

4.5. Branch-and-cut procedure

4.5.1. Cutting plane algorithm

The cutting plane algorithm generates useful valid
inequalities. We avoid adding a huge number of valid
inequalities at the root node of a branch-and-bound tree.
It may be a disadvantage to add all valid inequalities we

have found. Suppose that P is the polyhedron of

MDSLP, and X is the set of points in P

(tuZPX
2

∩=). We assume that we know a family F

of valid inequalities for X , 0ττ ≤x with F∈),(0ττ .

The cutting plane procedure is described as follows

Step 1. Set 0=i and PP =0 .

Step 2. Solve the LPi with iPx∈ . Let ix denote the

optimal solution.

Step 3. If
tui Zx 2∈ , stop. ix is the optimal solution of

the MDSLP.

Step 4. If
tui Zx 2∉ , try to find a valid inequality

Fii ∈),(0,ττ such that 0,iii x ττ > .

Step 5. If Fii ∈),(0,ττ can be found, augment

}|{ 0,1 iiii xxPP ππ ≤∩=+ . Otherwise, stop.

Step 6. Increment 1+← ii .

Step 7. Go to Step 2.

4.5.2. Branch –and-cut procedure.

The branch-and-cut procedure is a combination of
cutting plane algorithm and branch-and-bound. After
solving the LP relaxation in branch node, we try to find
a violated cut by using the cutting planes. Each branch
node has a formulation of LPi which fixes a certain
variable to 0 or 1. The descendent nodes inherit the
bounds of the variables and violated cuts from their
ancestor node.
Suppose a certain problem LPi provides the optimal

solution x whose objective value z is less than

incumbent value. If x is integral, the incumbent

solution is updated to x . Else, we branch into two

nodes.
When we select another node to solve after making

branch, the branching strategy that is used in this thesis
is depth-first search. If the current node is not pruned,
the next node considered is one of its descendents.
Otherwise, we go back on the path from this node to
the root until we find a node that has a child that has
not been considered yet. The main motivation for this is
to find feasible solutions quickly. When we make
branching, the variable selection rule that is used is
maximum integer infeasibility. We select one fractional
variable with value closet to 0.5. If the tie occurs, we

select one variable that has a higher coefficient of the
objective. The two new branch nodes are generated by
setting the value of the variable to 0 and 1, respectively.

5. Computational Results

In this chapter, we state the results we have obtained
by applying the algorithm presented in the previous
sections to the test problems.

5.1. Test problems

We assume that we have 3 types of sensors in test
problems. Each type of sensor owns its cost and range.
Table 5-1 shows the information about sensor type. Test
problems are divided into three classes. The first one is
problem A that includes a type of sensor, which is type1.
The second one is problem B that includes two types of
sensors, which are type 1 and type 2. The last one is
problem C that includes three types of sensors, which
are type 1, type 2, and type 3. Table 5-2 describes them.
We test two cases of the minimal sum of coverage

quantity by sensors α . At first, we test problems with

1=α , and then, test problems with 2=α . So, we test

6 problems. The size of sensor field varies from 2 to 13.
Each test problem is considered with these various sizes.

Table 5-1. Information about sensor type

Sensor type Cost ($10) Range (10m)

Type 1 2 2

Type 2 3 4

Type 3 4 6

Table 5-2. The ID of test problem

ID t Sensor type

A 1 Type 1

B 2 Type 1 ,2

C 3 Type 1, 2, 3

* t : the number of sensor types

To compare our algorithm, we test two control

groups. The first one runs with branch-and-bound
procedure which does not provide a cut generation. The
second one runs with branch-and-cut procedure without
isomorphism pruning.

5.2. LP solver

For the computational study, we coded the procedure
in C language. We used CPLEX 9.0 concert technology.
All problems were tested on a AMD Athlon™ 64 X2
Dual Core(2.01GHz).

5.3. Computational results

The results for test problems are summarized at

Table 5-3. In this table, the heading α refers to the

minimal sum of coverage quantity by sensors. The

heading u refers to the number of grid points in

width (length) of the sensor field. The headings IPZ ,

LPZ refer to the optimal solution of IP, and the

objective value of LP relaxation of MDSLP at the root
node. GAP is defined as follows:

100(%) ×
−

=
IP

LPIP

Z

ZZ
GAP

The heading UB is the upper bound which is
obtained by heuristic at the root node. The heading
#cuts and #B&C means the number of cuts generated,
and the number of nodes generated in the branch-and-
cut procedures. Finally, Time refers to the accumulated

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

 - 7 -

CPU time needed to solve the problem until the optimal
solution is obtained.

We could confirm our algorithm provides an optimal
solution in a short time.

Table 5-3. Results for test problems

ID α u
IPZ LPZ GAP(%) UB #cuts #B&C Time(sec)

A 1 2 4 4 0 4 0 0 0.063
A 1 3 8 7.656 4.3 10 0 0 0.031
A 1 4 14 12.05 13.9 16 4 0 0.031
A 1 5 18 17.04 5.31 26 13 0 0.031
A 1 6 26 23.56 9.38 36 20 12 0.078
A 1 7 32 30.21 5.61 56 24 10 0.109
A 1 8 42 39 7.15 64 195 630 1.078
A 1 9 50 47.37 5.26 82 215 575 1.265
A 1 10 64 57.88 9.57 100 303 6751 18.391
A 1 11 72 68.57 4.76 122 286 1052 3.968

A 2 2 8 8 0 8 0 0 0.078
A 2 3 16 16 0 18 0 0 0.031
A 2 4 26 26 0 32 0 0 0.031
A 2 5 38 36.16 4.85 50 0 0 0.047
A 2 6 52 48.51 6.71 72 19 0 0.062
A 2 7 68 63.86 6.1 98 86 73 0.219
A 2 8 88 79.23 9.97 128 180 5272 3.453
A 2 9 106 98.07 7.48 162 231 7261 8.141
A 2 10 130 118.8 8.61 200 288 804439 14015.9
A 2 11 152 139.8 8.06 242 351 987646 22597.8

B 1 2 4 3.489 12.8 4 0 0 0.031
B 1 3 6 4.85 19.2 6 9 0 0.031
B 1 4 9 6.59 26.8 12 12 0 0.062
B 1 5 12 9.549 20.4 18 9 4 0.046
B 1 6 15 13.35 11 24 63 68 0.171
B 1 7 20 15.99 20 24 297 1567 2.406
B 1 8 24 19.03 20.7 33 387 15215 27.469
B 1 9 27 23.55 12.8 42 489 165317 1181.45
B 1 10 33 29.34 11.1 54 603 931182 25026.2

B 2 2 8 6.978 12.8 8 0 0 0.078
B 2 3 12 9.821 18.2 12 49 37 0.02
B 2 4 15 13.38 10.8 21 10 0 0.047
B 2 5 22 19.33 12.1 33 57 89 0.05
B 2 6 29 26.71 7.91 36 219 2348 1.703
B 2 7 36 32.56 9.55 48 297 74580 185.781
B 2 8 42 38.45 8.44 60 387 17338 34.109

C 1 2 4 3.489 12.8 4 0 0 0.031
C 1 3 6 4.85 19.2 6 9 0 0.047
C 1 4 7 6.282 10.3 8 0 0 0.031
C 1 5 8 7.673 4.09 12 0 0 0.031
C 1 6 12 9.341 22.2 20 99 93 0.187
C 1 7 16 11.65 27.2 24 297 1780 2.078
C 1 8 19 15.31 19.4 24 387 1243 4.25
C 1 9 22 18.75 14.8 32 489 26074 92.187
C 1 10 26 20.96 19.4 36 603 664740 10569.8
C 1 11 28 23.4 16.4 44 729 92833 808.563
C 1 12 31 26.41 14.8 48 867 47286 589.204

C 2 2 8 6.978 12.8 8 0 0 0.047
C 2 3 11 9.821 10.7 12 4 20 0.046
C 2 4 14 12.56 10.3 20 9 7 0.062
C 2 5 16 15.47 3.31 20 0 0 0.046
C 2 6 22 18.68 15.1 32 219 582 0.562
C 2 7 27 23.42 13.3 40 163 76 0.39
C 2 8 32 30.96 3.24 48 12 0 0.078

6. Concluding Remarks

In this thesis, we have introduced an optimization

algorithm to solve MDSLP. We provided the new
formulation. MDSLP has a large number of constraints,
which are knapsack constraints and generalized upper

bound (GUB) constraints. We used branch-and-cut
algorithm with Gomory fractional cuts, cover cuts, and
GUB cover cuts. MDSLP has a large number of
symmetries, so we can consider one of them, and
ignore the others. When we execute branch-and-cut
procedure, we check that new branch node is

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

 - 8 -

isomorphic to the previously defined nodes or not. If
new branch node is isomorphic, then we can prune this
node. The proposed algorithm solves the problem in a
reasonable time.
The sensor location problem can be applied to

various coverage problems. This algorithm is one of the
most basic approaches to solve coverage problem. It is
expected to apply to various extensions. It is possible to
solve problem with arbitrary sensor field. In the
telecommunication networks, we can consider the
communication between sensors. These kinds of
research are more realistic.

References
 [1] Araque, J.R., Kudva, G., Morin, T.L., and Pekny,
J.F. (1994). A branch-and-cut algorithm for vehicle
routing problems. Annals of Operations Research, 50,
37–59.
[2] Balas, E., Ceria, S., and Cornue’jols, G.. (1996).
Mixed 0–1 programming by lift-and-project in a
branch-and-cut framework. Management Science, 42(9),
1229–1246.
[3] Brooks, R.R. and Iyengar, S.S. (1998). Multi-sensor
fusion: fundamentals and applications with software.
Upper Saddle River, N.J.: Prentice Hall.
[4] Chakrabarty, K., Iyengar, S.S., Qi, H., and Cho, E.
(2002). Grid coverage for
surveillance and target location in distributed sensor
networks. IEEE Transactions on Computers, 51, 1448-
1453.
[5] Chiu, P.L. and F.Y.S.Lin (2004). A simulated
annealing algorithm to support the sensor placement for
target location. Proc. IEEE CCECCE, 867-870.
[6] Dhillon, S.S. and Chakrabarty, K. (2003). Sensor
placement for effective coverage and surveillance in
distributed sensor networks. Proc. IEEE WCNC, 3,
1609-1614.
[7] Dhillon, S.S., Chakrabarty, K., and Iyengar, S.S.
(2002). Sensor placement for grid coverage under
imprecise detections. Proc. 15th International

Conference on Information Fusion, 2, 1581-1587.
[8] Estrin, D., Govindan, R., Heidemann, J., and Kumar,
S. (1999). Next century challenges: scalable
coordination in sensor networks. Proc. ACM/IEEE Int’l

Conf. Mobile Computing and Networks.
[9] Fischetti, M., Toth, P., and Vigo, D. (1997). A
branch-and-cut algorithm for the symmetric generalized
traveling salesman problem. Operations Research,
45(3), 378-394.
[10] Frank, Y. S. Lin, and Chiu, P.L. (2005). A near-
optimal sensor placement algorithm to achieve
complete coverage/discrimination in sensor networks,
IEEE Communications Letters, 9(1), 43-45.
[11] Garey, M., and Johnson, D. (1979). Computers and
intractability: a guide to the theory of NP-completeness.
San Francisco: W. H. Freeman.
[12] Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.
(1998). Lifted cover inequalities for 0-1 integer
programs: computation. IJOC 10, 427–437.
[13] Hoffman, K., Padberg, M.W. (1993). Solving
airline crew scheduling problems by branch and cut.
Management Science, 39, 657–682.
[14] Iyengar, S.S., Prasad, L., and Min, H. (1995).
Advances in distributed sensor technology. Englewood
Cliffs, N.J.: Prentice Hall.
[15] Kahn, J.M., Katz, R.H., and Pister, K.S.J. (1999).
Mobile networking for smart dust. Proc. ACM/IEEE

Int’l Conf. Mobile Computing and Networks.
[16] Kaparis, K. and Letchford, A.N. (2005). A cut-and-

branch algorithm for the multidimensional knapsack
problem. . Lancaster University.
[17] Margot, F. (2002). Pruning by isomorphism in
branch-and-cut. Mathematical Programming, 94, 71–90.
[18] Margot, F. (2003). Exploiting orbits in symmetric
ILP. Mathematical Programming Ser.B, 98, 3–21.
[19] Nemhauser, G..L. and Wolsey, L.A. (1998). Integer
and combinatorial optimization. New York: John Wiley
and Sons, Ltd..
[20] O’Rourke, J. (1987). Art gallery theorems and
algorithms. New York: Oxford Univ. Press.
[21] Padberg, M. and Rinald, G.. (1991). A branch-and-
cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM Review,
33, 60-100.
[22] Raaphorst, S. (2004). Branch-and-cut for
symmetrical ILPs and combinatorial designs. A
master’s thesis. University of Ottawa.
[23] Sebastiani, R., Giorgini, P., and Mylopoulos, J.
(2004). Simple and minimum-cost satisfiability for goal
models. In 16th International Conference on Advanced
Information Systems Engineering, Riga, Latvia.
[24] Wolsey, L.A. (1998). Integer programming, New
York: Wiley.

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집

	MAIN

