• Title/Summary/Keyword: NOx Removal

Search Result 243, Processing Time 0.029 seconds

The Characteristics of Charging Water Spray at Electrostatic Precipitator

  • Chung, J.H.;Kanazawa, S.;Ohkubo, T.;Nomoto, Y.;Adachi, T.
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.132-136
    • /
    • 1994
  • The new spray system is proposed by using a pipe with hygroscopic needle electrode In order to develop an air-cleaning ESP with high collection efficiency for submicron particles and high removal efficiency for NOx, SO$_2$, NH$_3$. Fundamental characteristics of charging water spray, which is not an usual wet type, are investigated experimentally. As a result, corona discharging mode and ozone generation rate are significantly affected by the operational conditions, such as the applied voltage and wet condition of the needle electrode.

  • PDF

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Investigation on the Preparation Method of TiO2-mayenite for NOx Removal (질소산화물 제거를 위한 TiO2-mayenite 제조 방법에 관한 연구)

  • Park, Ji Hye;Park, Jung Jun;Park, Hee Ju;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.304-310
    • /
    • 2020
  • In order to apply a photocatalyst (TiO2) to various building materials, TiO2-mayenite was prepared in this study. The TiO2 was synthesized using the sol-gel method by fixing titanium isopropoxide (TTIP) and urea at a ratio of 1 : 1. Later, they were calcined in a temperature range of 400-700 ℃ to analyze the properties according to temperature. BET, TGA, and XRD were used to analyze the physical and chemical properties of TiO2. The nitrogen oxide removal test was confirmed by measuring the change in the concentration of NO for 1 h according to KS L ISO 22197-1. The prepared TiO2 samples exhibited an anatase crystal structure below 600 ℃, and TiO2 (urea)-400 showed the highest nitrogen oxide removal rate at 2.35 µmol h-1. TiO2-mayenite was prepared using two methods: spraying TiO2 dispersion solution (s/s) and sol-gel solution (g/s). Through BET and XRD analysis, it was found that 5-TiO2 (g/s) prepared by spraying a sol-gel solution has maintained its crystallinity even after heat treatment. Also, 5-TiO2 (g/s)-500 showed the highest removal rate of 0.55 µmol h-1 in the nitrogen oxide removal test. To prepare TiO2-mayenite, it was confirmed that mayenite should be blended with TiO2 in a sol-gel state to maintain the crystal structure and exhibit a high nitrogen oxide removal rate.

Enhanced NH3-SCR Activity of V/TiO2 Catalyst Prepared by Various Ball Mill Method (다양한 Ball Mill Method에 의해 제조된 V/TiO2 촉매의 NH3-SCR 활성 증진연구)

  • Kim, Dong Ho;Seo, Phill Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 2017
  • In this study, the selective catalytic reduction (SCR) for NOx removal was investigated in the temperature range of $150{\sim}400^{\circ}C$. XRD, BET and XPS analyses to determine the structural properties and valence state characteristics of the catalyst were performed. Various ball mill method were shown to a difference in activity at a low temperature below $250^{\circ}C$. Based on the catalyst with the highest denitrification efficiency, the ball mill time was the best result at 3 h. As a result of XPS analysis, the presence of the non-stoichiometric vanadium species and the increase of the number of atoms were attributed to a positive effect in the SCR reaction. it was confirmed that the correlation between the amount of lattice oxygen and the denitrification efficiency through the $O_2$ on-off experiment, and it was in a proportional relationship to each other.

Effect of Recirculated Exhaust Gas Temperature on Performance and Exhaust Emissions in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 성능 및 배기 배출물에 미치는 재순환 배기온도의 영향)

  • 배명환;하태용;류창성;하정호;박재윤
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.75-82
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions. And a novel diesel soot-removal device with a cylinder-type scrubber which has five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to study the effect of intake mixture temperature, a intake mixture heating device which has five heating coils is made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that NOx emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature.

  • PDF

Removal Properties of NOx by Hybrid Anion Exchanger (복합 음이온교환 수지를 이용한 NOx 제거 특성)

  • Song, Sang-Hun;Lee, Hyung-Keun;Park, Bo-Ryeung;Hwang, Eui-Hwan;Lee, Bum-Jae;Hwang, Taek-Sung
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.653-657
    • /
    • 2006
  • The adsorption properties for $NO_{2}$ by hybrid ion exchange fiber with resins were investigated. The adsorption of $NO_{2}$ was increased with increasing of adsorption time and the initial concentration. At the initial $NO_{2}$ concentration of 900 ppm, approximately 40% of initial $NO_{2}$ was adsorbed around 20 min. And the adsorption of $NO_{2}$ was decreased with increasing of flow rate from 20 to 40 L/min. The maximum adsorbed amount of initial $NO_{2}$ was 45% at the flow rate of 10 L/min. The amount of adsorption was increased with increasing the water content.

The NADPH oxidase inhibitor diphenyleneiodonium suppresses Ca2+ signaling and contraction in rat cardiac myocytes

  • Qui Anh Le;Tran Nguyet Trinh;Phuong Kim Luong;Vu Thi Van Anh;Ha Nam Tran;Joon-Chul Kim;Sun-Hee Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.335-344
    • /
    • 2024
  • Diphenyleneiodonium (DPI) has been widely used as an inhibitor of NADPH oxidase (Nox) to discover its function in cardiac myocytes under various stimuli. However, the effects of DPI itself on Ca2+ signaling and contraction in cardiac myocytes under control conditions have not been understood. We investigated the effects of DPI on contraction and Ca2+ signaling and their underlying mechanisms using video edge detection, confocal imaging, and whole-cell patch clamp technique in isolated rat cardiac myocytes. Application of DPI suppressed cell shortenings in a concentration-dependent manner (IC50 of ≅0.17 µM) with a maximal inhibition of ~70% at ~100 µM. DPI decreased the magnitude of Ca2+ transient and sarcoplasmic reticulum Ca2+ content by 20%-30% at 3 µM that is usually used to remove the Nox activity, with no effect on fractional release. There was no significant change in the half-decay time of Ca2+ transients by DPI. The L-type Ca2+ current (ICa) was decreased concentration-dependently by DPI (IC50 of ≅40.3 µM) with ≅13.1%-inhibition at 3 µM. The frequency of Ca2+ sparks was reduced by 3 µM DPI (by ~25%), which was resistant to a brief removal of external Ca2+ and Na+. Mitochondrial superoxide level was reduced by DPI at 3-100 µM. Our data suggest that DPI may suppress L-type Ca2+ channel and RyR, thereby attenuating Ca2+-induced Ca2+ release and contractility in cardiac myocytes, and that such DPI effects may be related to mitochondrial metabolic suppression.

A Study on Hybrid DeNOx Process Using Selective Catalytic Reduction and Adsorption (선택적촉매환원과 흡착을 이용한 복합 탈질공정 연구)

  • Moon, Seung-Hyun;Jeon, Dong-Hwan;Park, Sung-Youl
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1329-1336
    • /
    • 2007
  • This study was carried out to develop an efficient process abating high NO concentration. A hybrid process of selective catalytic reduction(SCR) and activated carbon fiber(ACF) adsorption was newly designed and tested. Used ACF in NO adsorption was regenerated by simultaneously applying heat and vacuum. The result of ACF regeneration was for superior in the desorption condition at $140^{\circ}C$ and vacuum 600 mmHg. A commercial catalyst was used at the conditions of reaction temperature at $300^{\circ}C$, $NH_3/NO$ mole ratio = 1.0 for SCR process. NO evolved from ACF regeneration reactor could be removed by SCR reactor up to 98%. But high concentration of NO was exhausted from SCR reactor for one minute when the flue gas of NO 300 ppm and deserted NO from ACF regeneration were simultaneously treated by the same SCR reactor. Therefore, it is necessary to use additional small sized SCR reactor or to increase $NH_3$ concentration for a short time along with NO concentration rather than to mix flue gas with the gas evolving from ACF regeneration at fixed $NH_3$ inlet concentration. The hybrid process of SCR and ACF showed high NO removal efficiency over 80% at any time courses. Through the repeated cycles, stable DeNOx efficiency was maintained, indicating that the hybrid process would be a good countermeasure to the spotaneously high NO concentration instead of increasing the SCR capacity.

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.

Numerical Study for Flow Uniformity in Selective Catalytic Reduction(SCR) Process (SCR 공정에서 반응기 내부의 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4666-4672
    • /
    • 2011
  • Performance of NOx removal in SCR(Selective Catalytic Reduction) process depends on such various factors as catalyst factors (catalyst composition, catalyst form, space velocity, etc.), temperature of exhaust gas, and velocity distribution of exhaust gas. Especially the flow uniformity of gas stream flowing into the catalyst layer is believed to be the most important factor to influence the performance. In this research, the flow characteristics of a SCR process at design stage was simulated, using 3-dimensional numerical analysis method, to confirm the uniformity of the gas stream. In addition, the effects of guide vanes, baffles, and perforated plates on the flow uniformity for the inside and catalyst layer of the reactor were studied in order to optimize the flow uniformity inside the SCR reactor. It was found that the installation of a guide vane at the inlet duct L-tube part and the installation of a baffle at the upper part is very effective in avoiding chaneling inside the reactor. It was also found that additional installation of a perforated plate at the lower part of the potential catalyst layer buffers once more the flow for very uniform distribution of the gas stream.